前言

最近在看《Linux内核设计与实现(原书第3版)》中第进程管理,有点疑问,上网顺便补习了linux内核链表第相关知识,在此记录下来。

疑问

书中写到:

3.2.6 进程家族树
...同样,也可以按一下方式依次访问子进程:struct task_struct *task;struct list_head *list;list_for_each(list, &current->children) {task = list_entry(list, struct task_struct, sibling);/* task 现在指向当前第某个子进程 */}
...

有疑问的是,为什么list_entry的第3个参数要用sibling?

Linux内核链表知识

网上链接上找了一篇介绍得比较好得文章(深入分析Linux内核链表),这里摘抄一部分,防止以后网页访问不了。

尽管这里使用2.6内核作为讲解的基础,但实际上2.4内核中的链表结构和2.6并没有什么区别。不同之处在于2.6扩充了两种链表数据结构:链表的读拷贝更新(rcu)和HASH链表(hlist)。这两种扩展都是基于最基本的list结构,因此,本文主要介绍基本链表结构,然后再简要介绍一下rcu和hlist。

链表数据结构的定义很简单(节选自[include/linux/list.h],以下所有代码,除非加以说明,其余均取自该文件):

1

2

3

struct list_head {

    struct list_head *next, *prev;

};

list_head结构包含两个指向list_head结构的指针prev和next,由此可见,内核的链表具备双链表功能,实际上,通常它都组织成双循环链表。

和第一节介绍的双链表结构模型不同,这里的list_head没有数据域。在Linux内核链表中,不是在链表结构中包含数据,而是在数据结构中包含链表节点。

在数据结构课本中,链表的经典定义方式通常是这样的(以单链表为例):

1

2

3

4

struct list_node {

    struct list_node *next;

    ElemType    data;

};

因为ElemType的缘故,对每一种数据项类型都需要定义各自的链表结构。有经验的C++程序员应该知道,标准模板库中的<list>采用的是C++ Template,利用模板抽象出和数据项类型无关的链表操作接口。

在Linux内核链表中,需要用链表组织起来的数据通常会包含一个struct list_head成员,例如在[include/linux/netfilter.h]中定义了一个nf_sockopt_ops结构来描述Netfilter为某一协议族准备的getsockopt/setsockopt接口,其中就有一个(struct list_head list)成员,各个协议族的nf_sockopt_ops结构都通过这个list成员组织在一个链表中,表头是定义在[net/core/netfilter.c]中的nf_sockopts(struct list_head)。从下图中我们可以看到,这种通用的链表结构避免了为每个数据项类型定义自己的链表的麻烦。Linux的简捷实用、不求完美和标准的风格,在这里体现得相当充分。

图3 nf_sockopts链表示意图

三、 链表操作接口

1. 声明和初始化

实际上Linux只定义了链表节点,并没有专门定义链表头,那么一个链表结构是如何建立起来的呢?让我们来看看LIST_HEAD()这个宏:

1

2

#define LIST_HEAD_INIT(name) { &(name), &(name) }

#define LIST_HEAD(name) struct list_head name = LIST_HEAD_INIT(name)

当我们用LIST_HEAD(nf_sockopts)声明一个名为nf_sockopts的链表头时,它的next、prev指针都初始化为指向自己,这样,我们就有了一个空链表,因为Linux用头指针的next是否指向自己来判断链表是否为空:

1

2

3

4

static inline int list_empty(const struct list_head *head)

{

        return head->next == head;

}

除了用LIST_HEAD()宏在声明的时候初始化一个链表以外,Linux还提供了一个INIT_LIST_HEAD宏用于运行时初始化链表:

1

2

3

#define INIT_LIST_HEAD(ptr) do { \

    (ptr)->next = (ptr); (ptr)->prev = (ptr); \

} while (0)

我们用INIT_LIST_HEAD(&nf_sockopts)来使用它。

2. 插入/删除/合并

a) 插入

对链表的插入操作有两种:在表头插入和在表尾插入。Linux为此提供了两个接口:

1

2

static inline void list_add(struct list_head *new, struct list_head *head);

static inline void list_add_tail(struct list_head *new, struct list_head *head);

因为Linux链表是循环表,且表头的next、prev分别指向链表中的第一个和最末一个节点,所以,list_add和list_add_tail的区别并不大,实际上,Linux分别用

1

__list_add(new, head, head->next);

1

__list_add(new, head->prev, head);

来实现两个接口,可见,在表头插入是插入在head之后,而在表尾插入是插入在head->prev之后。

假设有一个新nf_sockopt_ops结构变量new_sockopt需要添加到nf_sockopts链表头,我们应当这样操作:

1

list_add(&new_sockopt.list, &nf_sockopts);

从这里我们看出,nf_sockopts链表中记录的并不是new_sockopt的地址,而是其中的list元素的地址。如何通过链表访问到new_sockopt呢?下面会有详细介绍。

b) 删除

1

static inline void list_del(struct list_head *entry);

当我们需要删除nf_sockopts链表中添加的new_sockopt项时,我们这么操作:

1

list_del(&new_sockopt.list);

被剔除下来的new_sockopt.list,prev、next指针分别被设为LIST_POSITION2和LIST_POSITION1两个特殊值,这样设置是为了保证不在链表中的节点项不可访问--对LIST_POSITION1和LIST_POSITION2的访问都将引起页故障。与之相对应,list_del_init()函数将节点从链表中解下来之后,调用LIST_INIT_HEAD()将节点置为空链状态。

c) 搬移

Linux提供了将原本属于一个链表的节点移动到另一个链表的操作,并根据插入到新链表的位置分为两类:

1

2

static inline void list_move(struct list_head *list, struct list_head *head);

static inline void list_move_tail(struct list_head *list, struct list_head *head);

例如list_move(&new_sockopt.list,&nf_sockopts)会把new_sockopt从它所在的链表上删除,并将其再链入nf_sockopts的表头。

d) 合并

除了针对节点的插入、删除操作,Linux链表还提供了整个链表的插入功能:

1

static inline void list_splice(struct list_head *list, struct list_head *head);

假设当前有两个链表,表头分别是list1和list2(都是struct list_head变量),当调用list_splice(&list1,&list2)时,只要list1非空,list1链表的内容将被挂接在list2链表上,位于list2和list2.next(原list2表的第一个节点)之间。新list2链表将以原list1表的第一个节点为首节点,而尾节点不变。如图(虚箭头为next指针):

图4 链表合并list_splice(&list1,&list2)

当list1被挂接到list2之后,作为原表头指针的list1的next、prev仍然指向原来的节点,为了避免引起混乱,Linux提供了一个list_splice_init()函数:

1

static inline void list_splice_init(struct list_head *list, struct list_head *head);

该函数在将list合并到head链表的基础上,调用INIT_LIST_HEAD(list)将list设置为空链。

3. 遍历

遍历是链表最经常的操作之一,为了方便核心应用遍历链表,Linux链表将遍历操作抽象成几个宏。在介绍遍历宏之前,我们先看看如何从链表中访问到我们真正需要的数据项。

a) 由链表节点到数据项变量

我们知道,Linux链表中仅保存了数据项结构中list_head成员变量的地址,那么我们如何通过这个list_head成员访问到作为它的所有者的节点数据呢?Linux为此提供了一个list_entry(ptr,type,member)宏,其中ptr是指向该数据中list_head成员的指针,也就是存储在链表中的地址值,type是数据项的类型,member则是数据项类型定义中list_head成员的变量名,例如,我们要访问nf_sockopts链表中首个nf_sockopt_ops变量,则如此调用:

1

list_entry(nf_sockopts->next, struct nf_sockopt_ops, list);

这里"list"正是nf_sockopt_ops结构中定义的用于链表操作的节点成员变量名。

list_entry的使用相当简单,相比之下,它的实现则有一些难懂:

1

2

3

4

5

6

7

#define list_entry(ptr, type, member) container_of(ptr, type, member)

container_of宏定义在[include/linux/kernel.h]中:

#define container_of(ptr, type, member) ({          \

        const typeof( ((type *)0)->member ) *__mptr = (ptr); \

        (type *)( (char *)__mptr - offsetof(type,member) );})

offsetof宏定义在[include/linux/stddef.h]中:

#define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)

size_t最终定义为unsigned int(i386)。

这里使用的是一个利用编译器技术的小技巧,即先求得结构成员在与结构中的偏移量,然后根据成员变量的地址反过来得出属主结构变量的地址。

container_of()和offsetof()并不仅用于链表操作,这里最有趣的地方是((type *)0)->member,它将0地址强制"转换"为type结构的指针,再访问到type结构中的member成员。在container_of宏中,它用来给typeof()提供参数(typeof()是gcc的扩展,和sizeof()类似),以获得member成员的数据类型;在offsetof()中,这个member成员的地址实际上就是type数据结构中member成员相对于结构变量的偏移量。

如果这么说还不好理解的话,不妨看看下面这张图:

图5 offsetof()宏的原理

对于给定一个结构,offsetof(type,member)是一个常量,list_entry()正是利用这个不变的偏移量来求得链表数据项的变量地址。

b) 遍历宏

在[net/core/netfilter.c]的nf_register_sockopt()函数中有这么一段话:

1

2

3

4

5

6

7

8

        ……

struct list_head *i;

……

    list_for_each(i, &nf_sockopts) {

        struct nf_sockopt_ops *ops = (struct nf_sockopt_ops *)i;

        ……

    }

    ……

函数首先定义一个(struct list_head *)指针变量i,然后调用list_for_each(i,&nf_sockopts)进行遍历。在[include/linux/list.h]中,list_for_each()宏是这么定义的:

1

2

3

        #define list_for_each(pos, head) \

for (pos = (head)->next, prefetch(pos->next); pos != (head); \

        pos = pos->next, prefetch(pos->next))

它实际上是一个for循环,利用传入的pos作为循环变量,从表头head开始,逐项向后(next方向)移动pos,直至又回到head(prefetch()可以不考虑,用于预取以提高遍历速度)。

那么在nf_register_sockopt()中实际上就是遍历nf_sockopts链表。为什么能直接将获得的list_head成员变量地址当成struct nf_sockopt_ops数据项变量的地址呢?我们注意到在struct nf_sockopt_ops结构中,list是其中的第一项成员,因此,它的地址也就是结构变量的地址。更规范的获得数据变量地址的用法应该是:

1

struct nf_sockopt_ops *ops = list_entry(i, struct nf_sockopt_ops, list);

大多数情况下,遍历链表的时候都需要获得链表节点数据项,也就是说list_for_each()和list_entry()总是同时使用。对此Linux给出了一个list_for_each_entry()宏:

1

#define list_for_each_entry(pos, head, member)      ……

与list_for_each()不同,这里的pos是数据项结构指针类型,而不是(struct list_head *)。nf_register_sockopt()函数可以利用这个宏而设计得更简单:

1

2

3

4

5

6

……

struct nf_sockopt_ops *ops;

list_for_each_entry(ops,&nf_sockopts,list){

    ……

}

……

某些应用需要反向遍历链表,Linux提供了list_for_each_prev()和list_for_each_entry_reverse()来完成这一操作,使用方法和上面介绍的list_for_each()、list_for_each_entry()完全相同。

如果遍历不是从链表头开始,而是从已知的某个节点pos开始,则可以使用list_for_each_entry_continue(pos,head,member)。有时还会出现这种需求,即经过一系列计算后,如果pos有值,则从pos开始遍历,如果没有,则从链表头开始,为此,Linux专门提供了一个list_prepare_entry(pos,head,member)宏,将它的返回值作为list_for_each_entry_continue()的pos参数,就可以满足这一要求。

4. 安全性考虑

在并发执行的环境下,链表操作通常都应该考虑同步安全性问题,为了方便,Linux将这一操作留给应用自己处理。Linux链表自己考虑的安全性主要有两个方面:

a) list_empty()判断

基本的list_empty()仅以头指针的next是否指向自己来判断链表是否为空,Linux链表另行提供了一个list_empty_careful()宏,它同时判断头指针的next和prev,仅当两者都指向自己时才返回真。这主要是为了应付另一个cpu正在处理同一个链表而造成next、prev不一致的情况。但代码注释也承认,这一安全保障能力有限:除非其他cpu的链表操作只有list_del_init(),否则仍然不能保证安全,也就是说,还是需要加锁保护。

b) 遍历时节点删除

前面介绍了用于链表遍历的几个宏,它们都是通过移动pos指针来达到遍历的目的。但如果遍历的操作中包含删除pos指针所指向的节点,pos指针的移动就会被中断,因为list_del(pos)将把pos的next、prev置成LIST_POSITION2和LIST_POSITION1的特殊值。

当然,调用者完全可以自己缓存next指针使遍历操作能够连贯起来,但为了编程的一致性,Linux链表仍然提供了两个对应于基本遍历操作的"_safe"接口:list_for_each_safe(pos, n, head)、list_for_each_entry_safe(pos, n, head, member),它们要求调用者另外提供一个与pos同类型的指针n,在for循环中暂存pos下一个节点的地址,避免因pos节点被释放而造成的断链。

疑问解答

在《深入理解Linux内核》中有如下一图表明 task_struct 中 parent/children/sibling 三者的关系:

- sibling.next指向进程的下一个兄弟进程的进程描述符sibling成员,若其后没有其他兄弟进程,则指向父进程;而sibling.prev指向进程的上一个兄弟进程,若其之前没有兄弟进程,则指向父进程。
- children.next指向父进程的第一个子进程的sibling成员(而不是children成员!),而children.prev却指向父进程的最后一个子进程的sibling成员。

特别注意children.next指向的是sibling成员,因此在使用list_entry()获得task_struct指针时,参数要用sibling而不是children,更不是tasks成员。

linux 进程管理 task_struct 中 parent/children/sibling 成员的关系相关推荐

  1. 【Linux 内核】进程管理 task_struct 结构体 ① ( task_struct 结构体引入 | task_struct 代码示例 )

    文章目录 一.task_struct 结构体 二.task_struct 结构体代码示例 一.task_struct 结构体 在 Linux 操作系统 中 , 进程 作为 调度的实体 , 需要将其抽象 ...

  2. linux进程管理原理

    Linux 是一种动态系统,能够适应不断变化的计算需求.linux 计算需求的表现是以进程的通用抽象为中心的.进程可以是短期的(从命令行执行的一个命令),也可以是长期的(一种网络服务).因此,对进程及 ...

  3. linux进程概念(中)

    1. task_struct结构体, 结构体中的各个字段的含义. 为了管理进程,操作系统必须对每个进程所做的事情进行清楚的描述,为此,操作系统使用数据结构来代表处理不同的实体,这个数据结构就是通常所说 ...

  4. Linux进程管理(一)进程数据结构

    Linux进程管理 Linux进程管理(一)进程数据结构 Linux进程管理(二)进程调度 Linux进程管理(三)进程调度之主动调度 Linux进程管理(四)进程调度之抢占式调度 Linux进程管理 ...

  5. Linux进程管理原理笔记

    一.程序从编译(编译汇编.链接.装载到内存)到运行为进程 1. 在Linux上写程序和编译程序,也需要一系列的开发套件,运行下面的命令,就可以在centOS 7操作系统上安装开发套件: yum -y ...

  6. linux ps 进程组,linux进程管理(2)---进程的组织结构

    一.目的 linux为了不同的进程管理目的,使用了不同的方法组织进程之间的关系,为了体现父子关系,使用了"树形"图:为了对同一信号量统一处理,使用了进程组:为了快速查找某个进程,使 ...

  7. Linux—进程管理

    1. 进程的概念 Linux是一个多用户多任务的操作系统.多用户是指多个用户可以在同一时间使用同一个linux系统:多任务是指在Linux下可以同时执行多个任务,更详细的说,linux采用了分时管理的 ...

  8. Linux 进程管理之进程的终结

    当一个进程终结时,内核必须释放掉它所占有的资源并把这一终结事件告知父进程. 进程的终结大部分都要靠 exit() 来完成的,最终的系统调用为 do_exit(). asmlinkage long sy ...

  9. linux进程管理命令实验,实验2Linux进程管理.doc

    实验2Linux进程管理 实验2 Linux进程管理 实验目的 1.加深对进程概念的理解,明确进程和程序的区别 2.进一步认识并发执行的实质 3.分析进程争用资源的现象,学习解决进程互斥的方法 实验性 ...

最新文章

  1. 专题 11 IPC之管道
  2. python画二维散点图-基于python 二维数组及画图的实例详解
  3. 264分析两大利器 和 视频系列下载:264VISA和Elecard StreamEye Tools
  4. 三、mongodb数据库系列——mongodb和python交互 总结
  5. 青岛旅游学校计算机证书,【我和我的旅校】青岛旅游学校优秀毕业生郭千瑜
  6. oracle数据库主键消失,oracle数据库提示找不到主键
  7. 先序中序建立二叉树的递归算法
  8. java 发布应用_发布java应用程序的步骤
  9. [Math Processing Error] 问题的解决(F5刷新页面与 Ctrl/Shift + F5 刷新页面的区别)
  10. [android] 切换界面的通用处理
  11. k3c最新官改非常稳定了_2020国庆过后玉米价格最新行情走势
  12. 【北京迅为】i.MX6ULL终结者MPU6050 六轴传感器例程原理分析
  13. java求100以内偶数和
  14. Specification for the Lab VIEW Measurement File
  15. JS代码错误:Deleting local variable in strict mode
  16. 【十三】python面向对象之类和对象
  17. ASP WebShell 后门脚本与免杀
  18. 如何打印菱形图案(C语言)
  19. 插入排序及其时间复杂度推导
  20. 淘宝/天猫API:item_videolist-按分类搜索淘宝直播接口

热门文章

  1. 方便高效的JAVA对象转换工具
  2. Unable to resolve table ‘XXX‘ 的解决方案
  3. 电源管理芯片:nxp电源管理芯片对比国内趋势增长
  4. 万里汇WorldFirst可以个人注册吗?
  5. RFID桌面一体机在珠宝管理中的应用
  6. docker自建配置中心 异常 manifest schema v1 unsupport
  7. 替代Google Earth查历史影像的网站
  8. 深度解析“区块链+物联网”与新基建
  9. VB.net连接、读写SQL服务器数据库,并在窗口表格中显示数据
  10. 如何在Mac或PC上使用“查找我的iPhone