论文地址:https://arxiv.org/pdf/1812.05784.pdf

代码地址:https://github.com/nutonomy/second.pytorch

https://github.com/open-mmlab/OpenPCDet

一、论文动机

1.将点云投影到鸟瞰图,往往会丧失大部分空间信息,导致特征比较稀疏,直接用卷积神经网络效果不是很好。

2.为了解决这个问题,在PointNet基础上提出了VoxelNet,算是真正意义上的端对端的3D检测方法。尽管性能很好,但是他的推理速度只有4.4Hz,无法实时部署,second对它进行改进,但3D卷积还是实时的瓶颈。

二、论文方法

1.提出了一种新颖的点云编码器和检测网络

2.由于去掉了3D卷积,所以他的速度非常快,可以达到60Hz

3.直接操作柱体,而不是voxel,可以直接使用2D卷积操作,在GPU上十分高效

三、网络结构

第一块:将点云划分为柱体块,然后扩充点的特征到9个(xyz,xc,yc,zc,xp,yp),用PointNet简化版进行特征升维处理,maxpooling得到每个柱体的特征,再放到伪图像里。

第二块:使用2D CNN对伪图像特征进行处理,同时使用RPN网络,获得更好的定位精度和语义特征。

第三块:根据得到的特征图在先验框的基础上进行回归和分类

四、损失函数和其他创新

4.1损失函数

和VoxelNet里一样,每个类锚点都由宽度,长度,高度和z中心描述,并在两个方向上应用:0度和90度。(x,y,z,w,l,h,θ)使用smoothL1损失,角度使用正弦损失,朝向使用softmax分类损失,类别使用Focal Loss损失。pointpillar里正负样本的定义,每个类别的GT和相应的每个类别的anchor单独计算正负样本,流程是:对于每个GT,找到与其IOU最大的anchor,直接赋为正样本,然后每个anchor找iou最大的GT,筛选大于阈值正样本,小于阈值负样本。这么做是为了防止有些GT分不到anchor。可能GT与所有anchor的最大iou为0.3,防止不满足阈值导致匹配不上。

分类损失:将正负样本用scatter_转换为独热向量(batch_size, 321408, 4),4表示背景+三个类,然后模型预测的(batch_size, 248, 216, 18) --> (batch_size, 321408, 3),然后只计算三个类的focalloss损失。

4.2数据增强

数据增强对于性能的提升非常明显。

1.仿照SECOND建立真实框库,每次向点云里随机插入

2.对真实框进行旋转平移增强

3.全局点云增强,随机镜像翻转,全局缩放旋转,全局平移模拟定位噪声

4.3巧妙设计

VoxelNet的编码器是两个PointNet,这里瘦身就使用了一个, 这使我们的运行时在PyTorch runtime中减少了2.5ms。通过将上采样特征图层的输出尺寸减少一半至128,我们又节省了3.9ms。 这些变化均不会影响检测性能。

4.4推理部分

特征图上每个点都有6个anchor(3个尺度*2个角度)。对每个anchor都会预测三个类别概率,七个检测框参数,对于xyz的偏移量,要先乘以缩放比例系数,xy的是,z的系数是高度h,角度是argsin。每个anchor预测三个类别,分别sigmoid,得到三个分数,然后求max,得到最大的。根据阈值卡掉大部分anchor,然后进行无类别NMS,无类别NMS时,首先要选取topk概率,然后再NMS。

五、代码阅读

5.1Pillar Feature Net

将输入的点云进行pillar划分,每个pillar长宽为0.16m,得到网格平面(432,496),选取非空pillar,组成(M,32,4)和(M,3)pillar在网格平面坐标,然后进行点云特征扩充,每个点云增加其相对于该pillar内选取点平均xyz的偏移量和相对于pillar几何中心的xyz偏移量,得到(M,32,10),经过一个简化的PointNet对点云特征进行升维(M,32,64)再maxpooling得到(M,64),再将M个pillar放回到(432,496)的网格里,得到伪图像数据。

点云生成pillar代码pcdet/datasets/processor/data_processor.py

   def transform_points_to_voxels(self, data_dict=None, config=None):"""将点云转换为pillar,使用spconv的VoxelGeneratorV2因为pillar可是认为是一个z轴上所有voxel的集合,所以在设置的时候,只需要将每个voxel的高度设置成kitti中点云的最大高度即可"""#初始化点云转换成pillar需要的参数if data_dict is None:# kitti截取的点云范围是[0, -39.68, -3, 69.12, 39.68, 1]# 得到[69.12, 79.36, 4]/[0.16, 0.16, 4] = [432, 496, 1]grid_size = (self.point_cloud_range[3:6] - self.point_cloud_range[0:3]) / np.array(config.VOXEL_SIZE)self.grid_size = np.round(grid_size).astype(np.int64)self.voxel_size = config.VOXEL_SIZE# just bind the config, we will create the VoxelGeneratorWrapper later,# to avoid pickling issues in multiprocess spawnreturn partial(self.transform_points_to_voxels, config=config)if self.voxel_generator is None:self.voxel_generator = VoxelGeneratorWrapper(#给定每个pillar的大小  [0.16, 0.16, 4]vsize_xyz=config.VOXEL_SIZE,  #给定点云的范围 [0, -39.68, -3, 69.12, 39.68, 1]coors_range_xyz=self.point_cloud_range,  #给定每个点云的特征维度,这里是x,y,z,r 其中r是激光雷达反射强度num_point_features=self.num_point_features,#给定每个pillar中最多能有多少个点 32max_num_points_per_voxel=config.MAX_POINTS_PER_VOXEL,  #最多选取多少个pillar,因为生成的pillar中,很多都是没有点在里面的# 可以重上面的可视化图像中查看到,所以这里只需要得到那些非空的pillar就行max_num_voxels=config.MAX_NUMBER_OF_VOXELS[self.mode],  # 16000)points = data_dict['points']# 生成pillar输出voxel_output = self.voxel_generator.generate(points)# 假设一份点云数据是N*4,那么经过pillar生成后会得到三份数据# voxels代表了每个生成的pillar数据,维度是[M,32,4]# coordinates代表了每个生成的pillar所在的zyx轴坐标,维度是[M,3],其中z恒为0# num_points代表了每个生成的pillar中有多少个有效的点维度是[m,],因为不满32会被0填充voxels, coordinates, num_points = voxel_outputif not data_dict['use_lead_xyz']:voxels = voxels[..., 3:]  # remove xyz in voxels(N, 3)data_dict['voxels'] = voxelsdata_dict['voxel_coords'] = coordinatesdata_dict['voxel_num_points'] = num_pointsreturn data_dict# 下面是使用spconv生成pillar的代码    class VoxelGeneratorWrapper():def __init__(self, vsize_xyz, coors_range_xyz, num_point_features, max_num_points_per_voxel, max_num_voxels):try:from spconv.utils import VoxelGeneratorV2 as VoxelGeneratorself.spconv_ver = 1except:try:from spconv.utils import VoxelGeneratorself.spconv_ver = 1except:from spconv.utils import Point2VoxelCPU3d as VoxelGeneratorself.spconv_ver = 2if self.spconv_ver == 1:self._voxel_generator = VoxelGenerator(voxel_size=vsize_xyz,point_cloud_range=coors_range_xyz,max_num_points=max_num_points_per_voxel,max_voxels=max_num_voxels)else:self._voxel_generator = VoxelGenerator(vsize_xyz=vsize_xyz,coors_range_xyz=coors_range_xyz,num_point_features=num_point_features,max_num_points_per_voxel=max_num_points_per_voxel,max_num_voxels=max_num_voxels)def generate(self, points):if self.spconv_ver == 1:voxel_output = self._voxel_generator.generate(points)if isinstance(voxel_output, dict):voxels, coordinates, num_points = \voxel_output['voxels'], voxel_output['coordinates'], voxel_output['num_points_per_voxel']else:voxels, coordinates, num_points = voxel_outputelse:assert tv is not None, f"Unexpected error, library: 'cumm' wasn't imported properly."voxel_output = self._voxel_generator.point_to_voxel(tv.from_numpy(points))tv_voxels, tv_coordinates, tv_num_points = voxel_output# make copy with numpy(), since numpy_view() will disappear as soon as the generator is deletedvoxels = tv_voxels.numpy()coordinates = tv_coordinates.numpy()num_points = tv_num_points.numpy()return voxels, coordinates, num_points

点云特征扩充和简化版pointnet处理pcdet/models/backbones_3d/vfe/pillar_vfe.py

import torch
import torch.nn as nn
import torch.nn.functional as Ffrom .vfe_template import VFETemplateclass PFNLayer(nn.Module):def __init__(self,in_channels,out_channels,use_norm=True,last_layer=False):super().__init__()self.last_vfe = last_layerself.use_norm = use_normif not self.last_vfe:out_channels = out_channels // 2if self.use_norm:# 根据论文中,这是是简化版pointnet网络层的初始化# 论文中使用的是 1x1 的卷积层完成这里的升维操作(理论上使用卷积的计算速度会更快)# 输入的通道数是刚刚经过数据增强过后的点云特征,每个点云有10个特征,# 输出的通道数是64self.linear = nn.Linear(in_channels, out_channels, bias=False)# 一维BN层self.norm = nn.BatchNorm1d(out_channels, eps=1e-3, momentum=0.01)else:self.linear = nn.Linear(in_channels, out_channels, bias=True)self.part = 50000def forward(self, inputs):if inputs.shape[0] > self.part:# nn.Linear performs randomly when batch size is too largenum_parts = inputs.shape[0] // self.partpart_linear_out = [self.linear(inputs[num_part * self.part:(num_part + 1) * self.part])for num_part in range(num_parts + 1)]x = torch.cat(part_linear_out, dim=0)else:# x的维度由(M, 32, 10)升维成了(M, 32, 64)x = self.linear(inputs)torch.backends.cudnn.enabled = False# BatchNorm1d层:(M, 64, 32) --> (M, 32, 64)# (pillars,num_point,channel)->(pillars,channel,num_points)# 这里之所以变换维度,是因为BatchNorm1d在通道维度上进行,对于图像来说默认模式为[N,C,H*W],通道在第二个维度上x = self.norm(x.permute(0, 2, 1)).permute(0, 2, 1) if self.use_norm else xtorch.backends.cudnn.enabled = Truex = F.relu(x)# 完成pointnet的最大池化操作,找出每个pillar中最能代表该pillar的点# x_max shape :(M, 1, 64) x_max = torch.max(x, dim=1, keepdim=True)[0]if self.last_vfe:# 返回经过简化版pointnet处理pillar的结果return x_maxelse:x_repeat = x_max.repeat(1, inputs.shape[1], 1)x_concatenated = torch.cat([x, x_repeat], dim=2)return x_concatenatedclass PillarVFE(VFETemplate):"""model_cfg:NAME: PillarVFEWITH_DISTANCE: FalseUSE_ABSLOTE_XYZ: TrueUSE_NORM: TrueNUM_FILTERS: [64]num_point_features:4voxel_size:[0.16 0.16 4]POINT_CLOUD_RANGE: [0, -39.68, -3, 69.12, 39.68, 1]"""def __init__(self, model_cfg, num_point_features, voxel_size, point_cloud_range, **kwargs):super().__init__(model_cfg=model_cfg)self.use_norm = self.model_cfg.USE_NORMself.with_distance = self.model_cfg.WITH_DISTANCEself.use_absolute_xyz = self.model_cfg.USE_ABSLOTE_XYZnum_point_features += 6 if self.use_absolute_xyz else 3if self.with_distance:num_point_features += 1self.num_filters = self.model_cfg.NUM_FILTERSassert len(self.num_filters) > 0num_filters = [num_point_features] + list(self.num_filters)pfn_layers = []for i in range(len(num_filters) - 1):in_filters = num_filters[i]out_filters = num_filters[i + 1]pfn_layers.append(PFNLayer(in_filters, out_filters, self.use_norm, last_layer=(i >= len(num_filters) - 2)))# 加入线性层,将10维特征变为64维特征self.pfn_layers = nn.ModuleList(pfn_layers)self.voxel_x = voxel_size[0]self.voxel_y = voxel_size[1]self.voxel_z = voxel_size[2]self.x_offset = self.voxel_x / 2 + point_cloud_range[0]self.y_offset = self.voxel_y / 2 + point_cloud_range[1]self.z_offset = self.voxel_z / 2 + point_cloud_range[2]def get_output_feature_dim(self):return self.num_filters[-1]def get_paddings_indicator(self, actual_num, max_num, axis=0):"""计算padding的指示Args:actual_num:每个voxel实际点的数量(M,)max_num:voxel最大点的数量(32,)Returns:paddings_indicator:表明一个pillar中哪些是真实数据,哪些是填充的0数据"""# 扩展一个维度,使变为(M,1)actual_num = torch.unsqueeze(actual_num, axis + 1)# [1, 1]max_num_shape = [1] * len(actual_num.shape)# [1, -1]max_num_shape[axis + 1] = -1# (1,32)max_num = torch.arange(max_num, dtype=torch.int, device=actual_num.device).view(max_num_shape)# (M, 32)paddings_indicator = actual_num.int() > max_numreturn paddings_indicatordef forward(self, batch_dict, **kwargs):"""batch_dict:points:(N,5) --> (batch_index,x,y,z,r) batch_index代表了该点云数据在当前batch中的indexframe_id:(4,) --> (003877,001908,006616,005355) 帧IDgt_boxes:(4,40,8)--> (x,y,z,dx,dy,dz,ry,class)use_lead_xyz:(4,) --> (1,1,1,1)voxels:(M,32,4) --> (x,y,z,r)voxel_coords:(M,4) --> (batch_index,z,y,x) batch_index代表了该点云数据在当前batch中的indexvoxel_num_points:(M,)image_shape:(4,2) 每份点云数据对应的2号相机图片分辨率batch_size:4    batch_size大小"""voxel_features, voxel_num_points, coords = batch_dict['voxels'], batch_dict['voxel_num_points'], batch_dict['voxel_coords']# 求每个pillar中所有点云的和 (M, 32, 3)->(M, 1, 3) 设置keepdim=True的,则保留原来的维度信息# 然后在使用求和信息除以每个点云中有多少个点来求每个pillar中所有点云的平均值 points_mean shape:(M, 1, 3)points_mean = voxel_features[:, :, :3].sum(dim=1, keepdim=True) / voxel_num_points.type_as(voxel_features).view(-1, 1, 1)# 每个点云数据减去该点对应pillar的平均值得到差值 xc,yc,zcf_cluster = voxel_features[:, :, :3] - points_mean# 创建每个点云到该pillar的坐标中心点偏移量空数据 xp,yp,zpf_center = torch.zeros_like(voxel_features[:, :, :3])#  coords是每个网格点的坐标,即[432, 496, 1],需要乘以每个pillar的长宽得到点云数据中实际的长宽(单位米)#  同时为了获得每个pillar的中心点坐标,还需要加上每个pillar长宽的一半得到中心点坐标#  每个点的x、y、z减去对应pillar的坐标中心点,得到每个点到该点中心点的偏移量f_center[:, :, 0] = voxel_features[:, :, 0] - (coords[:, 3].to(voxel_features.dtype).unsqueeze(1) * self.voxel_x + self.x_offset)f_center[:, :, 1] = voxel_features[:, :, 1] - (coords[:, 2].to(voxel_features.dtype).unsqueeze(1) * self.voxel_y + self.y_offset)# 此处偏移多了z轴偏移  论文中没有z轴偏移f_center[:, :, 2] = voxel_features[:, :, 2] - (coords[:, 1].to(voxel_features.dtype).unsqueeze(1) * self.voxel_z + self.z_offset)# 如果使用绝对坐标,直接组合if self.use_absolute_xyz:features = [voxel_features, f_cluster, f_center]# 否则,取voxel_features的3维之后,在组合else:features = [voxel_features[..., 3:], f_cluster, f_center]# 如果使用距离信息if self.with_distance:# torch.norm的第一个2指的是求2范数,第二个2是在第三维度求范数points_dist = torch.norm(voxel_features[:, :, :3], 2, 2, keepdim=True)features.append(points_dist)# 将特征在最后一维度拼接 得到维度为(M,32,10)的张量features = torch.cat(features, dim=-1)# 每个pillar中点云的最大数量voxel_count = features.shape[1]"""由于在生成每个pillar中,不满足最大32个点的pillar会存在由0填充的数据,而刚才上面的计算中,会导致这些由0填充的数据在计算出现xc,yc,zc和xp,yp,zp出现数值,所以需要将这个被填充的数据的这些数值清0,因此使用get_paddings_indicator计算features中哪些是需要被保留真实数据和需要被置0的填充数据"""# 得到mask维度是(M, 32)# mask中指名了每个pillar中哪些是需要被保留的数据mask = self.get_paddings_indicator(voxel_num_points, voxel_count, axis=0)# (M, 32)->(M, 32, 1)mask = torch.unsqueeze(mask, -1).type_as(voxel_features)# 将feature中被填充数据的所有特征置0features *= maskfor pfn in self.pfn_layers:features = pfn(features)# (M, 64), 每个pillar抽象出一个64维特征features = features.squeeze()batch_dict['pillar_features'] = featuresreturn batch_dict

将M个pillar放回到原来坐标分布中形成伪图像pcdet/models/backbones_2d/map_to_bev/pointpillar_scatter.py

import torch
import torch.nn as nnclass PointPillarScatter(nn.Module):"""对应到论文中就是stacked pillars,将生成的pillar按照坐标索引还原到原空间中"""def __init__(self, model_cfg, grid_size, **kwargs):super().__init__()self.model_cfg = model_cfgself.num_bev_features = self.model_cfg.NUM_BEV_FEATURES  # 64self.nx, self.ny, self.nz = grid_size  # [432,496,1]assert self.nz == 1def forward(self, batch_dict, **kwargs):"""Args:pillar_features:(M,64)coords:(M, 4) 第一维是batch_index 其余维度为xyzReturns:batch_spatial_features:(batch_size, 64, 496, 432)"""# 拿到经过前面pointnet处理过后的pillar数据和每个pillar所在点云中的坐标位置# pillar_features 维度 (M, 64)# coords 维度 (M, 4)pillar_features, coords = batch_dict['pillar_features'], batch_dict['voxel_coords']# 将转换成为伪图像的数据存在到该列表中batch_spatial_features = []batch_size = coords[:, 0].max().int().item() + 1# batch中的每个数据独立处理for batch_idx in range(batch_size):# 创建一个空间坐标所有用来接受pillar中的数据# self.num_bev_features是64# self.nz * self.nx * self.ny是生成的空间坐标索引 [496, 432, 1]的乘积# spatial_feature 维度 (64,214272)spatial_feature = torch.zeros(self.num_bev_features,self.nz * self.nx * self.ny,dtype=pillar_features.dtype,device=pillar_features.device)  # (64,214272)-->1x432x496=214272# 从coords[:, 0]取出该batch_idx的数据maskbatch_mask = coords[:, 0] == batch_idx# 根据mask提取坐标this_coords = coords[batch_mask, :]# this_coords中存储的坐标是z,y和x的形式,且只有一层,因此计算索引的方式如下# 平铺后需要计算前面有多少个pillar 一直到当前pillar的索引"""因为前面是将所有数据flatten成一维的了,相当于一个图片宽高为[496, 432]的图片被flatten成一维的图片数据了,变成了496*432=214272;而this_coords中存储的是平面(不需要考虑Z轴)中一个点的信息,所以要将这个点的位置放回被flatten的一位数据时,需要计算在该点之前所有行的点总和加上该点所在的列即可"""# 这里得到所有非空pillar在伪图像的对应索引位置indices = this_coords[:, 1] + this_coords[:, 2] * self.nx + this_coords[:, 3]# 转换数据类型indices = indices.type(torch.long)# 根据mask提取pillar_featurespillars = pillar_features[batch_mask, :]pillars = pillars.t()# 在索引位置填充pillarsspatial_feature[:, indices] = pillars# 将空间特征加入list,每个元素为(64, 214272)batch_spatial_features.append(spatial_feature)# 在第0个维度将所有的数据堆叠在一起batch_spatial_features = torch.stack(batch_spatial_features, 0)# reshape回原空间(伪图像)    (4, 64, 214272)--> (4, 64, 496, 432)batch_spatial_features = batch_spatial_features.view(batch_size, self.num_bev_features * self.nz, self.ny,self.nx)# 将结果加入batch_dictbatch_dict['spatial_features'] = batch_spatial_featuresreturn batch_dict

5.2 2D CNN

得到伪图像特征(batch_size,64,432,496),使用FPN网络,进行多尺度特征提取和融合,三次上采样后得到(batch_size,128,248,216),拼接得到(batch_size,384,248,216)

pcdet/models/backbones_2d/base_bev_backbone.py

import numpy as np
import torch
import torch.nn as nnclass BaseBEVBackbone(nn.Module):def __init__(self, model_cfg, input_channels):super().__init__()self.model_cfg = model_cfg# 读取下采样层参数if self.model_cfg.get('LAYER_NUMS', None) is not None:assert len(self.model_cfg.LAYER_NUMS) == len(self.model_cfg.LAYER_STRIDES) == len(self.model_cfg.NUM_FILTERS)layer_nums = self.model_cfg.LAYER_NUMSlayer_strides = self.model_cfg.LAYER_STRIDESnum_filters = self.model_cfg.NUM_FILTERSelse:layer_nums = layer_strides = num_filters = []# 读取上采样层参数if self.model_cfg.get('UPSAMPLE_STRIDES', None) is not None:assert len(self.model_cfg.UPSAMPLE_STRIDES) == len(self.model_cfg.NUM_UPSAMPLE_FILTERS)num_upsample_filters = self.model_cfg.NUM_UPSAMPLE_FILTERSupsample_strides = self.model_cfg.UPSAMPLE_STRIDESelse:upsample_strides = num_upsample_filters = []num_levels = len(layer_nums)  # 2c_in_list = [input_channels, *num_filters[:-1]]  # (256, 128) input_channels:256, num_filters[:-1]:64,128self.blocks = nn.ModuleList()self.deblocks = nn.ModuleList()for idx in range(num_levels):  # (64,64)-->(64,128)-->(128,256) # 这里为cur_layers的第一层且stride=2cur_layers = [nn.ZeroPad2d(1),nn.Conv2d(c_in_list[idx], num_filters[idx], kernel_size=3,stride=layer_strides[idx], padding=0, bias=False),nn.BatchNorm2d(num_filters[idx], eps=1e-3, momentum=0.01),nn.ReLU()]for k in range(layer_nums[idx]):  # 根据layer_nums堆叠卷积层cur_layers.extend([nn.Conv2d(num_filters[idx], num_filters[idx], kernel_size=3, padding=1, bias=False),nn.BatchNorm2d(num_filters[idx], eps=1e-3, momentum=0.01),nn.ReLU()])# 在block中添加该层# *作用是:将列表解开成几个独立的参数,传入函数 # 类似的运算符还有两个星号(**),是将字典解开成独立的元素作为形参self.blocks.append(nn.Sequential(*cur_layers))if len(upsample_strides) > 0:  # 构造上采样层  # (1, 2, 4)stride = upsample_strides[idx]if stride >= 1:self.deblocks.append(nn.Sequential(nn.ConvTranspose2d(num_filters[idx], num_upsample_filters[idx],upsample_strides[idx],stride=upsample_strides[idx], bias=False),nn.BatchNorm2d(num_upsample_filters[idx], eps=1e-3, momentum=0.01),nn.ReLU()))else:stride = np.round(1 / stride).astype(np.int)self.deblocks.append(nn.Sequential(nn.Conv2d(num_filters[idx], num_upsample_filters[idx],stride,stride=stride, bias=False),nn.BatchNorm2d(num_upsample_filters[idx], eps=1e-3, momentum=0.01),nn.ReLU()))c_in = sum(num_upsample_filters)  # 512if len(upsample_strides) > num_levels:self.deblocks.append(nn.Sequential(nn.ConvTranspose2d(c_in, c_in, upsample_strides[-1], stride=upsample_strides[-1], bias=False),nn.BatchNorm2d(c_in, eps=1e-3, momentum=0.01),nn.ReLU(),))self.num_bev_features = c_indef forward(self, data_dict):"""Args:data_dict:spatial_features : (4, 64, 496, 432)Returns:"""spatial_features = data_dict['spatial_features']ups = []ret_dict = {}x = spatial_featuresfor i in range(len(self.blocks)):x = self.blocks[i](x)stride = int(spatial_features.shape[2] / x.shape[2])ret_dict['spatial_features_%dx' % stride] = xif len(self.deblocks) > 0:  # (4,64,248,216)-->(4,128,124,108)-->(4,256,62,54)ups.append(self.deblocks[i](x))else:ups.append(x)# 如果存在上采样层,将上采样结果连接if len(ups) > 1:"""最终经过所有上采样层得到的3个尺度的的信息每个尺度的 shape 都是 (batch_size, 128, 248, 216)在第一个维度上进行拼接得到x  维度是 (batch_size, 384, 248, 216)"""x = torch.cat(ups, dim=1)elif len(ups) == 1:x = ups[0]# Fasleif len(self.deblocks) > len(self.blocks):x = self.deblocks[-1](x)# 将结果存储在spatial_features_2d中并返回data_dict['spatial_features_2d'] = xreturn data_dict

5.3 SSD检测头

先验框的设计上,一共有三个类别的先验框,每个类别有一个尺度两个角度的先验框。

pcdet/models/dense_heads/anchor_head_single.py

import numpy as np
import torch.nn as nnfrom .anchor_head_template import AnchorHeadTemplateclass AnchorHeadSingle(AnchorHeadTemplate):"""Args:model_cfg: AnchorHeadSingle的配置input_channels: 384 输入通道数num_class: 3class_names: ['Car','Pedestrian','Cyclist']grid_size: (432, 496, 1)point_cloud_range: (0, -39.68, -3, 69.12, 39.68, 1)predict_boxes_when_training: False"""def __init__(self, model_cfg, input_channels, num_class, class_names, grid_size, point_cloud_range,predict_boxes_when_training=True, **kwargs):super().__init__(model_cfg=model_cfg, num_class=num_class, class_names=class_names, grid_size=grid_size,point_cloud_range=point_cloud_range,predict_boxes_when_training=predict_boxes_when_training)# 每个点有3个尺度的个先验框  每个先验框都有两个方向(0度,90度) num_anchors_per_location:[2, 2, 2]self.num_anchors_per_location = sum(self.num_anchors_per_location)  # sum([2, 2, 2])# Conv2d(512,18,kernel_size=(1,1),stride=(1,1))self.conv_cls = nn.Conv2d(input_channels, self.num_anchors_per_location * self.num_class,kernel_size=1)# Conv2d(512,42,kernel_size=(1,1),stride=(1,1))self.conv_box = nn.Conv2d(input_channels, self.num_anchors_per_location * self.box_coder.code_size,kernel_size=1)# 如果存在方向损失,则添加方向卷积层Conv2d(512,12,kernel_size=(1,1),stride=(1,1))if self.model_cfg.get('USE_DIRECTION_CLASSIFIER', None) is not None:self.conv_dir_cls = nn.Conv2d(input_channels,self.num_anchors_per_location * self.model_cfg.NUM_DIR_BINS,kernel_size=1)else:self.conv_dir_cls = Noneself.init_weights()# 初始化参数def init_weights(self):pi = 0.01# 初始化分类卷积偏置nn.init.constant_(self.conv_cls.bias, -np.log((1 - pi) / pi))# 初始化分类卷积权重nn.init.normal_(self.conv_box.weight, mean=0, std=0.001)def forward(self, data_dict):# 从字典中取出经过backbone处理过的信息# spatial_features_2d 维度 (batch_size, 384, 248, 216)spatial_features_2d = data_dict['spatial_features_2d']# 每个坐标点上面6个先验框的类别预测 --> (batch_size, 18, 200, 176)cls_preds = self.conv_cls(spatial_features_2d)# 每个坐标点上面6个先验框的参数预测 --> (batch_size, 42, 200, 176)  其中每个先验框需要预测7个参数,分别是(x, y, z, w, l, h, θ)box_preds = self.conv_box(spatial_features_2d)# 维度调整,将类别放置在最后一维度   [N, H, W, C] --> (batch_size, 200, 176, 18)cls_preds = cls_preds.permute(0, 2, 3, 1).contiguous()# 维度调整,将先验框调整参数放置在最后一维度   [N, H, W, C] --> (batch_size ,200, 176, 42)box_preds = box_preds.permute(0, 2, 3, 1).contiguous()# 将类别和先验框调整预测结果放入前向传播字典中self.forward_ret_dict['cls_preds'] = cls_predsself.forward_ret_dict['box_preds'] = box_preds# 进行方向分类预测if self.conv_dir_cls is not None:# # 每个先验框都要预测为两个方向中的其中一个方向 --> (batch_size, 12, 200, 176)dir_cls_preds = self.conv_dir_cls(spatial_features_2d)# 将类别和先验框方向预测结果放到最后一个维度中   [N, H, W, C] --> (batch_size, 248, 216, 12)dir_cls_preds = dir_cls_preds.permute(0, 2, 3, 1).contiguous()# 将方向预测结果放入前向传播字典中self.forward_ret_dict['dir_cls_preds'] = dir_cls_predselse:dir_cls_preds = None"""如果是在训练模式的时候,需要对每个先验框分配GT来计算loss"""if self.training:# targets_dict = {#     'box_cls_labels': cls_labels, # (4,211200)#     'box_reg_targets': bbox_targets, # (4,211200, 7)#     'reg_weights': reg_weights # (4,211200)# }targets_dict = self.assign_targets(gt_boxes=data_dict['gt_boxes']  # (4,39,8))# 将GT分配结果放入前向传播字典中self.forward_ret_dict.update(targets_dict)# 如果不是训练模式,则直接生成进行box的预测if not self.training or self.predict_boxes_when_training:# 根据预测结果解码生成最终结果batch_cls_preds, batch_box_preds = self.generate_predicted_boxes(batch_size=data_dict['batch_size'],cls_preds=cls_preds, box_preds=box_preds, dir_cls_preds=dir_cls_preds)data_dict['batch_cls_preds'] = batch_cls_preds  # (1, 211200, 3) 70400*3=211200data_dict['batch_box_preds'] = batch_box_preds  # (1, 211200, 7)data_dict['cls_preds_normalized'] = Falsereturn data_dict

六、Reference

https://blog.csdn.net/qq_41366026/article/details/123006401?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522166692373016800182114331%2522%252C%2522scm%2522%253A%252220140713.130102334..%2522%257D&request_id=166692373016800182114331&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~all~top_positive~default-1-123006401-null-null.142^v62^control_1,201^v3^control_1,213^v1^t3_control1&utm_term=pointpillars&spm=1018.2226.3001.4187

PointPillars论文阅读和代码解析相关推荐

  1. GLMP:任务型对话中全局到局部的记忆指针网络 论文阅读及代码解析

    UPDATE 11.6.2020 复习代码,修正部分内容,清晰化部分表述.如发现问题,欢迎留言讨论! 文章目录 UPDATE GLMP ABSTRACT 1.INTRODUCTION 2.GLMP M ...

  2. 单目标跟踪算法:Siamese RPN论文解读和代码解析

    点击上方"3D视觉工坊",选择"星标" 干货第一时间送达 作者:周威 | 来源:知乎 https://zhuanlan.zhihu.com/p/16198364 ...

  3. OpenCV图像处理算法——7(《Contrast image correction method》 论文阅读及代码实现)

    <Contrast image correction method> 论文阅读及代码实现 以下内容大部分引自:https://cloud.tencent.com/developer/art ...

  4. fishnet:论文阅读与代码理解

    fishnet:论文阅读与代码理解 一.论文概述 二.整体框架 三.代码理解 四.总结 fishnet论文地址:http://papers.nips.cc/paper/7356-fishnet-a-v ...

  5. paperswithcode 论文阅读与代码复现

    Machine Learning论文阅读与复现 神奇宝贝 1.丰富的论文合集 2.丰富的数据集 3.方法合集 4.论文解析 要是有一个cs科研er不知道这个宝藏网站,我都会伤心的,OK?https:/ ...

  6. Longformer论文解读和代码解析

    前言 这篇博文记录了longformer论文的主要思想.代码实现和结果复现方面的一些工作,相关链接如下: 原longformer论文地址 github上原作者公开的代码 huggingface上原作者 ...

  7. 【单目3D目标检测】MonoFlex论文精读与代码解析

    文章目录 Preface Abstract Contributions Pipeline Problem Definition Decoupled Representations of Objects ...

  8. [软件工程程序修复论文阅读]基于代码感知机器翻译的程序修复

    本文约2871字,预计阅读时长6分钟. 原文标题为CURE: Code-Aware Neural Machine Translation for Automatic Program Repair 论文 ...

  9. PointNet论文解读和代码解析

    目录 一.论文动机 现有的问题: 作者的思路及面临的问题: 二.论文方法 如何解决点云无序性问题?作者提出了三种想法. 针对点云的刚体运动不变性 三.网络结构 四.代码阅读 五.Reference(两 ...

  10. Inception V3论文解读和代码解析

    目录 论文解读 代码解析 小结 论文解读 在介绍inception V2时提到过,inception V3的论文依据是Rethinking the Inception Architecture for ...

最新文章

  1. python升级知识整理 第四节: 面向对象
  2. python 监控windows磁盘空间和备份大小
  3. CVPR2020 3D目标检测 PV-RCNN
  4. seo从入门到精通_SEO入门到精通(七):SEO工作的流程是什么?
  5. 新书发布:时隔一年,我的第二本书终于来了
  6. 深度解析:会用Excel,还有必要学Python吗?
  7. 简单排序算法设计(Java)
  8. Redis与MySQL双写一致性如何保证
  9. git rebase 合并中间的提交
  10. 蓝桥杯日期填空问题:高斯日记/星系炸弹
  11. spring自动扫描的注解@Component @Controller @Service @Repository
  12. 5年做100款游戏是什么体验?“高产”开发者的10条心得
  13. 线性代数的本质(Essense Of Linear Algebra)[2]
  14. unity中三种数据存储方式ScriptableObject,Json,Xml和Dictionary的序列化
  15. SP_Flash_Tool对应MTK CPU型号速查表汇总分析
  16. 银行大数据应用场景:客户画像如何做?
  17. PLC 变频器、触摸屏综合实训平台
  18. 试验设计——序贯设计
  19. python三国演义人物出场统计ppt_Python统计三国演义主要人物出场次数
  20. 《Qt5+安装包制作(Qt Installer Framework)》

热门文章

  1. 斜阳醉卧云端 余晖在山中浅眠
  2. 【2022级研究生人工智能高级语言程序设计考试说明】
  3. PID实践笔记-两轮直立车的速度控制
  4. 关于element-tree,解决id相同如何回显,同样的id只能选中一个的坑!!!!
  5. 这几个程序员都在用的兼职接私活平台,既靠谱又高效,让你收入飙涨
  6. [转载]打工辛酸路:我是一朵飘零的花之104
  7. 尝试向其中加入一个键值对,键和值在两行里输入,如果输入的键在字典中已经存在,则输出“您输入的姓名在通讯录中已存在”, 如输入的键在字典中不存在则把键和值加入到字典中。操作完成后输出字典中所有键值对。
  8. 苹果和富士康坚持推进印度制造,过于一厢情愿了,或加速衰退
  9. ai中如何插入签名_排版必看!如何在Ai中创建网格系统
  10. Python学习(二): Python xml 读取之 ET.parse()