区块链(blockchain)是眼下的大热门,新闻媒体大量报道,宣称它将创造未来。可是,简单易懂的入门文章却很少。区块链到底是什么,有何特别之处,很少有解释。

下面,我就来尝试,写一篇最好懂的区块链教程。毕竟它也不是很难的东西,核心概念非常简单,几句话就能说清楚。我希望读完本文,你不仅可以理解区块链,还会明白什么是挖矿、为什么挖矿越来越难等问题。需要说明的是,我并非这方面的专家。虽然很早就关注,但是仔细地了解区块链,还是从今年初开始。文中的错误和不准确的地方,欢迎大家指正。

一、区块链的本质

区块链是什么?一句话,它是一种特殊的分布式数据库。

首先,区块链的主要作用是储存信息。任何需要保存的信息,都可以写入区块链,也可以从里面读取,所以它是数据库。其次,任何人都可以架设服务器,加入区块链网络,成为一个节点。区块链的世界里面,没有中心节点,每个节点都是平等的,都保存着整个数据库。你可以向任何一个节点,写入/读取数据,因为所有节点最后都会同步,保证区块链一致。

二、区块链的最大特点

分布式数据库并非新发明,市场上早有此类产品。但是,区块链有一个革命性特点。区块链没有管理员,它是彻底无中心的。其他的数据库都有管理员,但是区块链没有。如果有人想对区块链添加审核,也实现不了,因为它的设计目标就是防止出现居于中心地位的管理当局。正是因为无法管理,区块链才能做到无法被控制。否则一旦大公司大集团控制了管理权,他们就会控制整个平台,其他使用者就都必须听命于他们了。但是,没有了管理员,人人都可以往里面写入数据,怎么才能保证数据是可信的呢?被坏人改了怎么办?请接着往下读,这就是区块链奇妙的地方。

三、区块

区块链由一个个区块(block)组成。区块很像数据库的记录,每次写入数据,就是创建一个区块。

每个区块包含两个部分。

  • 区块头(Head):记录当前区块的特征值
  • 区块体(Body):实际数据

区块头包含了当前区块的多项特征值。

  • 生成时间
  • 实际数据(即区块体)的哈希
  • 上一个区块的哈希
  • ...

这里,你需要理解什么叫哈希(hash),这是理解区块链必需的。

所谓"哈希"就是计算机可以对任意内容,计算出一个长度相同的特征值。区块链的 哈希长度是256位,这就是说,不管原始内容是什么,最后都会计算出一个256位的二进制数字。而且可以保证,只要原始内容不同,对应的哈希一定是不同的。

举例来说,字符串123的哈希是a8fdc205a9f19cc1c7507a60c4f01b13d11d7fd0(十六进制),转成二进制就是256位,而且只有123能得到这个哈希。(理论上,其他字符串也有可能得到这个哈希,但是概率极低,可以近似认为不可能发生。)

因此,就有两个重要的推论。

  • 推论1:每个区块的哈希都是不一样的,可以通过哈希标识区块。
  • 推论2:如果区块的内容变了,它的哈希一定会改变。

四、 Hash 的不可修改性

区块与哈希是一一对应的,每个区块的哈希都是针对"区块头"(Head)计算的。也就是说,把区块头的各项特征值,按照顺序连接在一起,组成一个很长的字符串,再对这个字符串计算哈希。

Hash = SHA256( 区块头 )

上面就是区块哈希的计算公式,SHA256是区块链的哈希算法。注意,这个公式里面只包含区块头,不包含区块体,也就是说,哈希由区块头唯一决定,

前面说过,区块头包含很多内容,其中有当前区块体的哈希,还有上一个区块的哈希。这意味着,如果当前区块体的内容变了,或者上一个区块的哈希变了,一定会引起当前区块的哈希改变。

这一点对区块链有重大意义。如果有人修改了一个区块,该区块的哈希就变了。为了让后面的区块还能连到它(因为下一个区块包含上一个区块的哈希),该人必须依次修改后面所有的区块,否则被改掉的区块就脱离区块链了。由于后面要提到的原因,哈希的计算很耗时,短时间内修改多个区块几乎不可能发生,除非有人掌握了全网51%以上的计算能力。

正是通过这种联动机制,区块链保证了自身的可靠性,数据一旦写入,就无法被篡改。这就像历史一样,发生了就是发生了,从此再无法改变。

每个区块都连着上一个区块,这也是"区块链"这个名字的由来。

五、挖矿

由于必须保证节点之间的同步,所以新区块的添加速度不能太快。试想一下,你刚刚同步了一个区块,准备基于它生成下一个区块,但这时别的节点又有新区块生成,你不得不放弃做了一半的计算,再次去同步。因为每个区块的后面,只能跟着一个区块,你永远只能在最新区块的后面,生成下一个区块。所以,你别无选择,一听到信号,就必须立刻同步。

所以,区块链的发明者中本聪(这是假名,真实身份至今未知)故意让添加新区块,变得很困难。他的设计是,平均每10分钟,全网才能生成一个新区块,一小时也就六个。

这种产出速度不是通过命令达成的,而是故意设置了海量的计算。也就是说,只有通过极其大量的计算,才能得到当前区块的有效哈希,从而把新区块添加到区块链。由于计算量太大,所以快不起来。

这个过程就叫做采矿(mining),因为计算有效哈希的难度,好比在全世界的沙子里面,找到一粒符合条件的沙子。计算哈希的机器就叫做矿机,操作矿机的人就叫做矿工。

六、难度系数

读到这里,你可能会有一个疑问,人们都说采矿很难,可是采矿不就是用计算机算出一个哈希吗,这正是计算机的强项啊,怎么会变得很难,迟迟算不出来呢?

原来不是任意一个哈希都可以,只有满足条件的哈希才会被区块链接受。这个条件特别苛刻,使得绝大部分哈希都不满足要求,必须重算。

原来,区块头包含一个难度系数(difficulty),这个值决定了计算哈希的难度。举例来说,第100000个区块的难度系数是 14484.16236122。

区块链协议规定,使用一个常量除以难度系数,可以得到目标值(target)。显然,难度系数越大,目标值就越小。

哈希的有效性跟目标值密切相关,只有小于目标值的哈希才是有效的,否则哈希无效,必须重算。由于目标值非常小,哈希小于该值的机会极其渺茫,可能计算10亿次,才算中一次。这就是采矿如此之慢的根本原因。

前面说过,当前区块的哈希由区块头唯一决定。如果要对同一个区块反复计算哈希,就意味着,区块头必须不停地变化,否则不可能算出不一样的哈希。区块头里面所有的特征值都是固定的,为了让区块头产生变化,中本聪故意增加了一个随机项,叫做 Nonce。

Nonce 是一个随机值,矿工的作用其实就是猜出 Nonce 的值,使得区块头的哈希可以小于目标值,从而能够写入区块链。Nonce 是非常难猜的,目前只能通过穷举法一个个试错。根据协议,Nonce 是一个32位的二进制值,即最大可以到21.47亿。第 100000 个区块的 Nonce 值是274148111,可以理解成,矿工从0开始,一直计算了 2.74 亿次,才得到了一个有效的 Nonce 值,使得算出的哈希能够满足条件。

运气好的话,也许一会就找到了 Nonce。运气不好的话,可能算完了21.47亿次,都没有发现 Nonce,即当前区块体不可能算出满足条件的哈希。这时,协议允许矿工改变区块体,开始新的计算。

七、难度系数的动态调节

正如上一节所说,采矿具有随机性,没法保证正好十分钟产出一个区块,有时一分钟就算出来了,有时几个小时可能也没结果。总体来看,随着硬件设备的提升,以及矿机的数量增长,计算速度一定会越来越快。

为了将产出速率恒定在十分钟,中本聪还设计了难度系数的动态调节机制。他规定,难度系数每两周(2016个区块)调整一次。如果这两周里面,区块的平均生成速度是9分钟,就意味着比法定速度快了10%,因此接下来的难度系数就要调高10%;如果平均生成速度是11分钟,就意味着比法定速度慢了10%,因此接下来的难度系数就要调低10%。

难度系数越调越高(目标值越来越小),导致了采矿越来越难。

八、区块链的分叉

即使区块链是可靠的,现在还有一个问题没有解决:如果两个人同时向区块链写入数据,也就是说,同时有两个区块加入,因为它们都连着前一个区块,就形成了分叉。这时应该采纳哪一个区块呢?

现在的规则是,新节点总是采用最长的那条区块链。如果区块链有分叉,将看哪个分支在分叉点后面,先达到6个新区块(称为"六次确认")。按照10分钟一个区块计算,一小时就可以确认。

由于新区块的生成速度由计算能力决定,所以这条规则就是说,拥有大多数计算能力的那条分支,就是正宗的区块链。

九、总结

区块链作为无人管理的分布式数据库,从2009年开始已经运行了8年,没有出现大的问题。这证明它是可行的。

但是,为了保证数据的可靠性,区块链也有自己的代价。一是效率,数据写入区块链,最少要等待十分钟,所有节点都同步数据,则需要更多的时间;二是能耗,区块的生成需要矿工进行无数无意义的计算,这是非常耗费能源的。

因此,区块链的适用场景,其实非常有限。

  1. 不存在所有成员都信任的管理当局
  2. 写入的数据不要求实时使用
  3. 挖矿的收益能够弥补本身的成本

如果无法满足上述的条件,那么传统的数据库是更好的解决方案。

目前,区块链最大的应用场景(可能也是唯一的应用场景),就是以比特币为代表的加密货币。

本文转载自:http://www.ruanyifeng.com/blog/2017/12/blockchain-tutorial.html

作者:阮一峰

区块链入门(让你轻松了解什么是区块链、挖矿,通俗易懂)相关推荐

  1. 区块链入门:如何简单易懂地介绍区块链(图文)

    原标题:区块链是什么,如何简单易懂地介绍区块链? 区块链目前就处于一个人人都谈区块链,却无法感知其实际技术魅力的阶段,正是因为此,做出区块链的杀手级应用就至关重要,要做到这一点就需要进行各种场景的探索 ...

  2. python适合开发区块链吗_区块链入门开发语言选择 python适合开发区块链吗

    区块链用什么需要开发?在哪可以了解? 从现在各个公有链的使用情况来看,来一代的都是参考Bitcoin,使用C 开发,而新一代的区块链技术使用的语言则是Go,Python,C#和JavaScript.以 ...

  3. BlockChain: 区块链入门课程 -- 区块链适用于移动性 分享和收费案例

    BlockChain: 区块链入门课程 -- 区块链适用于移动性 分享和收费案例 分享和收费 在第四周和上周,我们将通过位于德国的充电站网络Share&Charge案例了解区块链技术在能源领域 ...

  4. Python之区块链入门,揭秘比特币

    本文将简单介绍区块链(BlockChain)并用Python做一简单实现. 什么是区块链 简单来说,区块链就是把加密数据(区块)按照时间顺序进行叠加(链)生成的永久.不可逆向修改的记录.具体来说,它区 ...

  5. 【三分钟讲清区块链/比特币】之一:区块链入门教程

    区块链(blockchain)是眼下的大热门,新闻媒体大量报道,宣称它将创造未来.可是,简单易懂的入门文章却很少.区块链到底是什么,有何特别之处,很少有解释. 下面,我就来尝试,写一篇最好懂的区块链教 ...

  6. BlockChain:区块链入门课程 -- 区块链应用于能源 POWER LEDGER案例

    BlockChain:区块链入门课程-- 区块链应用于能源 POWER LEDGER案例 Power Ledger:如何启用区块链 概述能源部门的现状,将区块链作为关键推动因素之一. 3.1 欢迎来到 ...

  7. java 区块链开发_Java开发人员的区块链入门

    java 区块链开发 顶级技术专家将区块链列为十大新兴技术之一,它们有潜力在未来十年内改变我们的世界,这值得您花时间学习. 如果您是一名具有Java背景的开发人员,并且想快速了解区块链技术,那么本文将 ...

  8. 01-区块链入门之 区块链介绍一-大叔思维

    1.区块链技术是什么? 总的来说,区块链是一套协议,一组规范,而不是具体代码.项目. 理解了这套协议,你可以基于现有的技术,以不同的语言去实现它.我们也无法用一句简单的话去概况什么是区块链,站的角度不 ...

  9. 干货!区块链入门、进阶、行业专家观点!1000篇好文帮你破解区块链密码!(中篇)...

    随着区块链概念理论的不断成熟以及强劲技术的不断深耕,区块链已经成为投资圈中备受关注的热点,从区块链1.0时代落地数字货币比特币.莱特币等,打开了区块链通向新弯道的高速路口,到区块链2.0时代开始通过智 ...

最新文章

  1. class pybind11::module 没有成员 def
  2. 配置MM模块material management几个常见的错误
  3. 基于XML及注解配置方式实现AOP及aspectJ表达式
  4. android so abi适配,Android NDK学习(六): so文件兼容之abiFilters的使用
  5. 网易丁磊:创造中国特色文化精品,助力实现中国文化大时代
  6. SQL Server 高可用性(一)AlwaysOn 技术
  7. [leetcode]241. 为运算表达式设计优先级
  8. Flutter监听网络变化
  9. 计算机关机后 为何会亮,Win10系统电脑关机后主机电源灯依然亮着怎么解决
  10. 边缘增强算法MATLAB,基于MATLAB的图像增强算法研究及实现
  11. mac 电脑如何从双系统恢复原mac系统,无需u盘一键重新安装macos
  12. Android高级UI开发(九)之侧滑菜单 --抽屉
  13. html图片水波浪,css 实现水波纹,波浪动画效果
  14. Cortex-M3/M4芯片启动流程概括
  15. 钉钉调用新版待办任务
  16. iptable防火墙(一)
  17. 去年一个百万级的小软件项目经验分享,20来个功能模块,项目不太好做有些棘手
  18. java控制台打印输出 中文乱码 解决办法
  19. 企业邮箱一般从哪登录?
  20. 重构os.nb.payload教程

热门文章

  1. iptables防火墙理论清晰解释(四表、五链、流程图文并茂)学习不能忘!!!
  2. cocos2d-x iphone5s版碰到的问题
  3. c++匿名函数 原理 以及 注意点
  4. 【软工视频】软件、软件工程
  5. 联想k80微型计算机用电量,配置高端待机超长 联想K80手机低价上市
  6. 熬夜整理,从书籍到视频!最全的Go语言教程来了,快来收藏!
  7. 怎么理解 64x64x64 3D LUT?
  8. MySQL模糊查询:LIKE模式和REGEXP模式
  9. 生而为人 请珍惜生命
  10. (荷兰)彼得·冯·门施著:博物馆学研究的目的