目录

1.算法描述

2.仿真效果预览

3.MATLAB核心程序

4.完整MATLAB


1.算法描述

智能控制的思想最早来自傅京孙教授[,他通过人机控制器和机器人方面的研究,首先把人工智能的自觉推理方法用于学习控制系统,将智能控制概括为自动控制和人工智能的结合。他认为低层次控制中用常规的基本控制器,而高层次的智能决策应该具有拟人化功能。J.M.Mendel教授进一步在空间飞行器的学习控制中应用了人工智能技术,并提出了人工智能的概念。1976年,Leondes和Mendel首次正式使用了人工智能控制一词。从70年代开始傅京孙、Glorioso和Saridi等人从控制理论的角度总结了人工智能技术与自适应、自学习和自组织控制的关系,正式提出建立智能控制理论的构想。1985年8月在美国纽约PRI、IEEE召开的智能控制专题讨论会,标志着智能控制作为一个新的学科分支正式被控制界公认。从1987年开始,每年都举行一次智能控制国际研讨会,形成了智能控制的研究热潮。80年代以来微机的高速发展为实用的智能控制器的研制及智能控制系统的开发提供了技术基础。人工智能技术中关于知识表达、推理技术以及专家系统的设计与建造方面的技术进展也为智能控制系统的研究和开发准备了新的条件和途径,出现了专家控制系统并在工业过程控制、航空航天技术和军事决策等方面实际应用,取得了引人注目的应用成果。

近年来,随着对智能控制方法的深入研究,在板形板厚控制方面已开发出各种智能控制器。在利用轧机出口侧的测厚仪进行厚度反馈的AGC系统中,由于测厚仪与辊缝有一段较大的距离,因而检测的厚度偏差具有时滞性,无法消除一些呈周期性频繁变化的因素对轧件出口厚度的影响。而且,由于取样和控制周期长,从而增加了带头、带尾不合格部分的长度,使成材率降低。为此,后续开发的AGC系统力图对出口辊缝的带钢厚度进行检测和控制。目前比较成熟的有辊缝控制法、厚度计法及秒流量法。文献[19]设计了一种新型的基于遗传算法的多变量模糊控制器,通过结合模糊预测和遗传算法来优化控制规律,利用遗传算法来辨识系统参数。文中提出的辨识方法是成功的,但是在模糊模型的辨识中也存在着以下问题:(1)模糊模型结构的辨识方法不是简单易行;(2)如何进一步改进遗传学习算法,以便加快学习的收敛速度。文献[21]针对被控对象轧制过程中参数,AGC系统采用了PID在线辨识自校正控制技术,取得了很好的控制效果。该方法有很强的针对性,没有很好的解决非线性、强耦合问题。文献]采用人工神经网络技术与预测控制及 控制  相结合的方法,提出了一种基于结构化多层前向神经网络的 次优控制器设计方案,通过对板厚板形综合系统的仿真研究表明,系统不需解耦即可获得满意的控制精度和稳定的鲁棒性。近年来国内在这方面也有很多成果,文献[14]将模糊技术与神经网络技术相结合,提出了一种模糊神经网络解耦控制方法进行板形板厚控制也有不错的效果。

结构为:

PSO算法是Keimedy和Eberhart于1995年提出来的。由于该算法实现简单,搜索能力强。目前已经得到了广泛的应用。其中几个有代表性的例子:

1.利用PSO算法代替误差反向传播算法来训练神经网络。研究表明PSO算法是一种很有潜力的神经网络学习算法。PSO算法速度比较快而且可以得到比较好的结果,还没有遗传算法碰到的问题[28]。PSO算法被用于选择BP神经元网络的权值[24,27]。文献[24]使用BP神经网络的输入层、隐含层和输出层分别有5个、3个和1个神经元,实验结果证明了PSO算法跟BP算法相比的优越性。此外,用PSO算法训练进化神经网络的另一个成功例子是用于分析人的颤抖。对人的颤抖的诊断,包括帕金森(Parkinson)病和原发性振颤(Essential Tremor),是一个非常有挑战性的领域[26]。

2.PSO算法用于计算机数字控制研磨优化[29]。因为多点金属切割的过程基本原理还未被很好的理解,同时也由于这一过程的高度非线性特性。而使用PSO优化进行的网络权值进化提供了一种准确可靠的方法。完成终端研磨操作所需时间显著减少,这导致总体成本降低,同时得到更好的研磨质量。这一概念正被扩展到其他的机器制造过程以及复杂过程参数集的预测和优化。

3.PSO算法也被成功的应用于电力系统领域[30]。日本学者Fukuyama等人使用PSO算法对一个电力系统的动态稳定性参数进行优化。这里主要涉及到带有约束条件的、使用不同版本的PSO算法相结合用来决定对连续和离散控制变量的控制策略的问题。此外,余欣梅等人用PSO算法解决电容器优化配置问题很好的获得了电容器优化配置问题的全局最优解。

2.仿真效果预览

matlab2022a仿真结果如下:

3.MATLAB核心程序


if sel == 1%输入的CR和h%分别仅输入CR和h,使其达到解耦的结果[yy,Zbest] = func_train_onlineHPSO(iteration,Sizes,CR,h);figure(1)plot(yy,'LineWidth',2);grid on;xlabel('进化代数');ylabel('适应度');individual=Zbest;save trainHPSO.mat Zbest yy
elseload trainHPSO.matfigure(1)plot(yy,'LineWidth',2);grid on;xlabel('进化代数');ylabel('适应度');individual=Zbest;
end%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%以下为RBF%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
w11=reshape(individual(1:6),3,2);
w12=reshape(individual(7:12),3,2);
w13=reshape(individual(13:18),3,2);w21=individual(19:27);
w22=individual(28:36);
w23=individual(37:45);rate1=0.006;rate2=0.001; %学习率
k=0.3;K=3;
y_1=zeros(3,1);y_2=y_1;y_3=y_2;   %输出值
u_1=zeros(3,1);u_2=u_1;u_3=u_2;   %控制率
h1i=zeros(3,1);h1i_1=h1i;  %第一个控制量
h2i=zeros(3,1);h2i_1=h2i;  %第二个控制量
h3i=zeros(3,1);h3i_1=h3i;  %第三个空置量
x1i=zeros(3,1);x2i=x1i;x3i=x2i;x1i_1=x1i;x2i_1=x2i;x3i_1=x3i;   %隐含层输出 %权值初始化
k0=0.03;%值限定
ynmax=1;ynmin=-1;  %系统输出值限定
xpmax=1;xpmin=-1;  %P节点输出限定
qimax=1;qimin=-1;  %I节点输出限定
qdmax=1;qdmin=-1;  %D节点输出限定
uhmax=1;uhmin=-1;  %输出结果限定for k=1:1:6000k%系统输出y1(k) = (0.4*y_1(1)+u_1(1)/(1+u_1(1)^2)+0.2*u_1(1)^3+0.5*u_1(2))+0.3*y_1(2);y2(k) = (0.4*y_1(2)+u_1(2)/(1+u_1(2)^2)+0.2*u_1(2)^3+0.5*u_1(1))+0.3*y_1(1);y3(k) = 0;%控制目标if selt == 1%加扰测试r1(k)  = CR + 0.005*sin(2*pi*k/200);r2(k)  = h  + 0.015*sin(2*pi*k/200);r3(k)  = 0; r1s(k) = CR;r2s(k) = h;r3s(k) = 0;         else        %跟踪测试r1(k)  = sign(0.001*sin(2*pi*k/2000));r2(k)  = sign(0.003*sin(2*pi*k/2000));r3(k)  = 0;      r1s(k) = CR;r2s(k) = h;r3s(k) = 0;    end%系统输出限制yn=[y1(k),y2(k),y3(k)];yn(find(yn>ynmax))=ynmax;yn(find(yn<ynmin))=ynmin;%输入层输出x1o=[r1(k);yn(1)];x2o=[r2(k);yn(2)];x3o=[r3(k);yn(3)];%隐含层 x1i=w11*x1o;x2i=w12*x2o;x3i=w13*x3o;%比例神经元P计算xp=[x1i(1),x2i(1),x3i(1)];xp(find(xp>xpmax))=xpmax;xp(find(xp<xpmin))=xpmin;qp=xp;h1i(1)=qp(1);h2i(1)=qp(2);h3i(1)=qp(3);%积分神经元I计算xi=[x1i(2),x2i(2),x3i(2)];qi=[0,0,0];qi_1=[h1i(2),h2i(2),h3i(2)];qi=qi_1+xi;qi(find(qi>qimax))=qimax;qi(find(qi<qimin))=qimin;h1i(2)=qi(1);h2i(2)=qi(2);h3i(2)=qi(3);%微分神经元D计算xd=[x1i(3),x2i(3),x3i(3)];qd=[0 0 0];xd_1=[x1i_1(3),x2i_1(3),x3i_1(3)];qd=xd-xd_1;qd(find(qd>qdmax))=qdmax;qd(find(qd<qdmin))=qdmin;h1i(3)=qd(1);h2i(3)=qd(2);h3i(3)=qd(3);%输出层计算wo=[w21;w22;w23];qo=[h1i',h2i',h3i'];qo=qo';uh=wo*qo;uh(find(uh>uhmax))=uhmax;uh(find(uh<uhmin))=uhmin;u1(k)=uh(1);u2(k)=uh(2);u3(k)=uh(3);  %计算误差error=[r1(k)-y1(k);r2(k)-y2(k);0];  error1(k)=error(1);error2(k)=error(2);error3(k)=0;J(k)=0.5*(error(1)^2+error(2)^2);   %调整大小ypc=[y1(k)-y_1(1);y2(k)-y_1(2);y3(k)-y_1(3)];uhc=[u_1(1)-u_2(1);u_1(2)-u_2(2);u_1(3)-u_2(3)];%隐含层和输出层权值调整%调整w21Sig1=sign(ypc./(uhc(1)+0.00001));dw21=sum(error.*Sig1)*qo';  w21=w21+rate2*dw21;%调整w22Sig2=sign(ypc./(uh(2)+0.00001));dw22=sum(error.*Sig2)*qo';w22=w22+rate2*dw22;%调整w23Sig3=sign(ypc./(uh(3)+0.00001));dw23=sum(error.*Sig3)*qo';w23=w23+rate2*dw23;%输入层和隐含层权值调整delta2=zeros(3,3);wshi=[w21;w22;w23];for t=1:1:3delta2(1:3,t)=error(1:3).*sign(ypc(1:3)./(uhc(t)+0.00000001));endfor j=1:1:3sgn(j)=sign((h1i(j)-h1i_1(j))/(x1i(j)-x1i_1(j)+0.00001));ends1=sgn'*[r1(k),y1(k)];wshi2_1=wshi(1:3,1:3);alter=zeros(3,1);dws1=zeros(3,2);for j=1:1:3for p=1:1:3alter(j)=alter(j)+delta2(p,:)*wshi2_1(:,j);endendfor p=1:1:3dws1(p,:)=alter(p)*s1(p,:);endw11=w11+rate1*dws1;%调整w12for j=1:1:3sgn(j)=sign((h2i(j)-h2i_1(j))/(x2i(j)-x2i_1(j)+0.0000001));ends2=sgn'*[r2(k),y2(k)];wshi2_2=wshi(:,4:6);alter2=zeros(3,1);dws2=zeros(3,2);for j=1:1:3for p=1:1:3alter2(j)=alter2(j)+delta2(p,:)*wshi2_2(:,j);endendfor p=1:1:3dws2(p,:)=alter2(p)*s2(p,:);endw12=w12+rate1*dws2;%调整w13for j=1:1:3sgn(j)=sign((h3i(j)-h3i_1(j))/(x3i(j)-x3i_1(j)+0.0000001));ends3=sgn'*[r3(k),y3(k)];wshi2_3=wshi(:,7:9);alter3=zeros(3,1);dws3=zeros(3,2);for j=1:1:3for p=1:1:3alter3(j)=(alter3(j)+delta2(p,:)*wshi2_3(:,j));endendfor p=1:1:3dws3(p,:)=alter2(p)*s3(p,:);endw13=w13+rate1*dws3;%参数更新u_3=u_2;u_2=u_1;u_1=uh;y_2=y_1;y_1=yn;h1i_1=h1i;h2i_1=h2i;h3i_1=h3i;x1i_1=x1i;x2i_1=x2i;x3i_1=x3i;ErrCr(k) = y1(k) - r1s(k);Errh(k)  = y2(k) - r2s(k);
end

4.完整MATLAB

V

m基于改进PSO粒子群优化的RBF神经网络解耦控制算法matlab仿真相关推荐

  1. 【MATLAB教程案例11】基于PSO粒子群优化算法的函数极值计算matlab仿真及其他应用

    FPGA教程目录 MATLAB教程目录 -------------------------------------------------------------------------------- ...

  2. PSO粒子群优化CNN-优化神经网络神经元个数dropout和batch_size等超参数

    1.摘要 本文主要讲解:PSO粒子群优化-CNN-优化神经网络神经元个数dropout和batch_size,目标为对沪深300价格进行预测 主要思路: PSO Parameters :粒子数量.搜索 ...

  3. Matlab:基于Matlab实现人工智能算法应用的简介(SVM支撑向量机GA遗传算法PSO粒子群优化算法)、案例应用之详细攻略

    Matlab:基于Matlab实现人工智能算法应用的简介(SVM支撑向量机&GA遗传算法&PSO粒子群优化算法).案例应用之详细攻略 目录 1.SVM算法使用案例 1.1.Libsvm ...

  4. 基于改进二进制粒子群算法的配电网重构(matlab实现)

    目录 一.引言 1.问题背景 2.二进制粒子群算法 2.1简介 2.2 S i g m o i d Sigmoid Sigmoid函数 2.3二进制粒子群算法 2.4算法的改进 二.配电网重构模型 1 ...

  5. Python实现PSO粒子群优化支持向量机回归模型(svr算法)项目实战

    说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取. 1.项目背景 在污水处理全过程中,为了更好地使解决后的水达到环保标准,在污水处 ...

  6. Python实现PSO粒子群优化循环神经网络LSTM分类模型项目实战

    说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取. 1.项目背景 PSO是粒子群优化算法(Particle Swarm Optim ...

  7. 【项目实战】Python实现用PSO粒子群优化算法对KMeans聚类模型进行优化项目实战

    说明:这是一个机器学习实战项目(附带数据+代码+文档+代码讲解),如需数据+代码+文档+代码讲解可以直接到文章最后获取. 1.项目背景 粒子群优化算法(Particle Swarm optimizat ...

  8. PSO粒子群优化-LSTM-pyswarms框架-实现期货价格预测

    1.摘要 本文主要讲解:PSO粒子群优化-LSTM-pyswarms框架-实现期货价格预测 主要思路: 从网上找到影响期货价格预测的相关数据,爬取下来并处理好,形成时间序列训练数据 使用train_t ...

  9. 基于粒子群优化的BP神经网络(分类应用) - 附代码

    基于粒子群优化的BP神经网络(分类应用) - 附代码 文章目录 基于粒子群优化的BP神经网络(分类应用) - 附代码 1.鸢尾花iris数据介绍 2.数据集整理 3.粒子群优化BP神经网络 3.1 B ...

最新文章

  1. 虚拟机ubuntu使用笔记之samba安装
  2. 2021年春季学期期末统.考试 公司概论 试题
  3. output怎么用_这个功能QQ音乐,网易云音乐都有——用python实现一个音乐检索器...
  4. 如何使用Idea导入jar包
  5. linux查看文件格式
  6. oppok3如何刷机_OPPO K3刷机教程?
  7. 蒙特卡洛—赌博模型笔记
  8. android手机免费无线投屏电脑方法教程步骤AirServer7
  9. Google ZXing系列讲解(二)——生成WIFi二维码
  10. 软件开发工作经验分享
  11. 月薪3千与3万文案的区别!一字千金就体现在细微之处
  12. 计算机时间小于会计期间错误,会计期间手工记账和电脑记账不一样问题
  13. Spatial-Spectral Transformer for Hyperspectral Image Classification_外文翻译
  14. diameter协议栈_Diameter协议摘要
  15. 「表白神器」Python超火隐藏表白图 你能看出来吗?「附源码」
  16. 【无线网络技术】WLAN技术学习笔记
  17. 带你全面解析Android框架体系架构view篇,全网疯传
  18. 大数据专业应该怎么学习
  19. 341-Linux 连接数据库
  20. 马里奥游戏 java

热门文章

  1. dw实现html实时更新,DW在HTML5 响应式代码实现完成
  2. ICG-Maleimide|吲哚菁绿-马来酰亚胺|开发共轭物
  3. JS一个元素怎么绑定多个事件
  4. 精美个人导航引导页html源码
  5. 【第148期】游戏策划:恭喜@灯入职剧情策划
  6. ai跟随路径_Illustrator描边路径 AI指定数量沿全路径混合小技巧 AI制版文字变粗...
  7. 京东第一位博士后出站 看看他研究的是什么“黑科技”
  8. 小峰峰的pat甲级刷题记录1030
  9. Verilog HDL
  10. 天龙八部服务端数据传递