放大器的作用:     1、能把输入讯号的电压或功率放大的装置,由电子管或晶体管、电源变压器和其他电器元件组成。用在通讯、广播、雷达、电视、自动控制等各种装置 中。     原理:高频功率放大器用于发射机的末级,作用是将高频已调波信号进行功率放大,以满足发送功率的要求,然后经过天线将其辐射到空间,保证在一定区域内的接 收机可以接收到满意的信号电平,并且不干扰相邻信道的通信。     高频功率放大器是通信系统中发送装置的重要组件。按其工作频带的宽窄划分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器通常以具有选 频滤波作用的选频电路作为输出回路,故又称为调谐功率放大器或谐振功率放大器;宽带高频功率放大器的输出电路则是传输线变压器或其他宽带匹配电路,因此又 称为非调谐功率放大器。高频功率放大器是一种能量转换器件,它将电源供给的直流能量转换成为高频交流输出在“低频电子线路”课程中已知,放大器可以按照电 流导通角的不同,

运算放大器原理 运算放大器原理

运算放大器(Operational Amplifier,简称OP、OPA、OPAMP)是一种直流耦合﹐差模(差动模式)输入、通常为单端输出(Differential-in, single-ended output)的高增益(gain)电压放大器,因为刚开始主要用于加法,乘法等运算电路中,因而得名。一个理想的运算放大器必须具备下列特性:无限大的 输入阻抗、等于零的输出阻抗、无限大的开回路增益、无限大的共模排斥比的部分、无限大的频宽。最基本的运算放大器如图1-1。一个运算放大器模组一般包括 一个正输入端(OP_P)、一个负输入端(OP_N)和一个输出端(OP_O)。

图1-1

通常使用运算放大器时,会将其输出端与其反相输入端(inverting input node)连接,形成一负反馈(negative feedback)组态。原因是运算放大器的电压增益非常大,范围从数百至数万倍不等,使用负反馈方可保证电路的稳定运作。但是这并不代表运算放大器不能 连接成正回馈(positive feedback),相反地,在很多需要产生震荡讯号的系统中,正回馈组态的运算放大器是很常见的组成元件。

开环回路

图1-2开环回路运算放大器

开环回路运算放大器如图1-2。当一个理想运算放大器采用开回路的方式工作时,其输出与输入 电压的关系式如下:

Vout = ( V+ -V-) * Aog

其中Aog代表运算放大器的开环回路差动增益(open-loop differential gai由于运算放大器的开环回路增益非常高,因此就算输入端的差动讯号很小,仍然会让输出讯号「饱和」(saturation),导致非线性的失真出现。 因此运算放大器很少以开环回路出现在电路系统中,少数的例外是用运算放大器做比较器(comparator),比较器的输出通常为逻辑准位元的「0」与 「1」。

闭环负反馈

将运算放大器的反向输入端与输出端连接起来,放大器电路就处在负反馈组态的状况,此时通常可 以将电路简单地称为闭环放大器。闭环放大器依据输入讯号进入放大器的端点,又可分为反相(inverting)放大器与非反相(non- inverting)放大器两种。

反相闭环放大器如图1-3。假设这个闭环放大器使用理想的运算放大器,则因为其开环增益为无 限大,所以运算放大器的两输入端为虚接地(virtual ground),其输出与输入电压的关系式如下:

Vout = -(Rf / Rin) * Vin

图1-3反相闭环放大器

非反相闭环放大器如图1-4。假设这个闭环放大器使用理想的运算放大器,则因为其开环增益为 无限大,所以运算放大器的两输入端电压差几乎为零,其输出与输入电压的关系式如下:

Vout = ((R2 / R1) + 1) * Vin

图1-4非反相闭环放大器

闭环正回馈

将运算放大器的正向输入端与输出端连接起来,放大器电路就处在正回馈的状况,由于正回馈组态 工作于一极不稳定的状态,多应用于需要产生震荡讯号的应用中。 理想运放和理想运放条件

在分析和综合运放应用电路时,大多数情况下,可以将集成运放看成一个理想运算放大器。理想运 放顾名思义是将集成运放的各项技术指标理想化。由于实际运放的技术指标比较接近理想运放,因此由理想化带来的误差非常小,在一般的工程计算中可以忽略。

理想运放各项技术指标具体如下:

1.开环差模电压放大倍数Aod = ∞;

2.输入电阻Rid = ∞;输出电阻Rod =0

3.输入偏置电流IB1=IB2=0 ;

4.失调电压UIO 、失调电流IIO 、失调电压温漂、失调电流温漂均为零;

5.共模抑制比CMRR = ∞;;

6.-3dB带宽fH = ∞   ;

7.无内部干扰和噪声。

实际运放的参数达到如下水平即可以按理想运放对待:

电压放大倍数达到104~105倍;输入电阻达到105Ω;输出电阻小于几百欧姆; 外电路中的电流远大于偏置电流;失调电压、失调电流及其温漂很小,造成电路的漂移在允许范围之内,电路的稳定性符合要求即可;输入最小信号时,有一定信噪 比,共模抑制比大于等于60dB;带宽符合电路带宽要求即可。

运算放大器中的虚短和虚断含意

理想运放工作在线性区时可以得出二条重要的结论:

虚短

因为理想运放的电压放大倍数很大,而运放工作在线性区,是一个线性放大电路,输出电压不超出线性范围(即有限值),所以,运算放大器同相输入端与反相输入 端的电位十分接近相等。在运放供电电压为±15V时,输出的最大值一般在10~13V。所以运放两输入端的电压差,在1mV以下,近似两输入端短路。这一 特性称为虚短,显然这不是真正的短路,只是分析电路时在允许误差范围之内的合理近似。

虚断

由于运放的输入电阻一般都在几百千欧以上,流入运放同相输入端和反相输入端中的电流十分微小,比外电路中的电流小几个数量级,流入运放的电流往往可以忽 略,这相当运放的输入端开路,这一特性称为虚断。显然,运放的输入端不能真正开路。

运用“虚短”、“虚断”这两个概念,在分析运放线性应用电路时,可以简化应用电路的分析过 程。运算放大器构成的运算电路均要求输入与输出之间满足一定的函数关系,因此均可应用这两条结论。如果运放不在线性区工作,也就没有“虚短”、“虚断”的 特性。如果测量运放两输入端的电位,达到几毫伏以上,往往该运放不在线性区工作,或者已经损坏。

重要指标

输入失调电压UIO

一个理想的集成运放,当输入电压为零时,输出电压也应为零(不加调零装置)。但实际上集成运 放的差分输入级很难做到完全对称,通常在输入电压为零时,存在一定的输出电压。输入失调电压是指为了使输出电压为零而在输入端加的补偿电压。实际上是指输 入电压为零时,将输出电压除以电压放大倍数,折算到输入端的数值称为输入失调电压,即

UIO的大小反应了运放的对称程度和电位配合情况。UIO越小越好,其 量级在2mV~20mV之间,超低失调和低漂移运放的UIO一般在1μV~20μV之间

输入失调电流IIO

当输出电压为零时,差分输入级的差分对管基极的静态电流之差称为输入失调电流IIO ,即

由于信号源内阻的存在,IIO的变化会引起输入电压的变化,使运放输出电压不为 零。IIO愈小,输入级差分对管的对称程度越好,一般约为1nA~0.1μA。

输入偏置电流IIB

集成运放输出电压为零时,运放两个输入端静态偏置电流的平均值定义为输入偏置电流,即

从使用角度来看,偏置电流小好,由于信号源内阻变化引起的输出电压变化也愈小,故输入偏置电 流是重要的技术指标。一般IIB约为1nA~0.1μA。

输入失调电压温漂△UIO/△T

输入失调电压温漂是指在规定工作温度范围内,输入失调电压随温度的变化量与温度变化量的比 值。它是衡量电路温漂的重要指标,不能用外接调零装置的办法来补偿。输入失调电压温漂越小越好。一般的运放的输入失调电压温漂在±1mV/℃~±20mV /℃之间。

输入失调电流温漂 △IIO/△T

在规定工作温度范围内,输入失调电流随温度的变化量与温度变化量之比值称为输入失调电流温 漂。输入失调电流温漂是放大电路电流漂移的量度,不能用外接调零装置来补偿。高质量的运放每度几个pA。

最大差模输入电压Uidmax

最大差模输入电压Uidmax是指运放两输入端能承受的最大差模输入电压。超过此 电压,运放输入级对管将进入非线性区,而使运放的性能显著恶化,甚至造成损坏。根据工艺不同,Uidmax约为±5V~±30V。

最大共模输入电压Uicmax

最大共模输入电压Uicmax是指在保证运放正常工作条件下,运放所能承受的最大 共模输入电压。共模电压超过此值时,输入差分对管的工作点进入非线性区,放大器失去共模抑制能力,共模抑制比显著下降。

最大共模输入电压Uicmax定义为,标称电源电压下将运放接成电压跟随器时,使 输出电压产生1%跟随误差的共模输入电压值;或定义为 下降6dB时所加的共模输入电压值。

开环差模电压放大倍数Aud是指集成运放工作在线性区、接入规定的负载,输出电压 的变化量与运放输入端口处的输入电压的变化量之比。运放的Aud在60~120dB之间。不同功能的运放,Aud相差悬殊。

差模输入电阻Rid是指输入差模信号时运放的输入电 阻。Rid越大,对信号源的影响越小,运放的输入电阻Rid一般都在几百 千欧以上。

运放共模抑制比KCMR的定义与差分放大电路中的定义相同,是差模电压放大倍数与 共模电压放大倍数之比,常用分贝数来表示。不同功能的运放,KCMR也不相同,有的在60~70dB之间,有的高达180dB。KCMR 越大,对共模干扰抑制能力越强。

开环带宽BW

开环带宽又称-3dB带宽,是指运算放大器的差模电压放大倍数Aud在高频段下降 3dB所对应的频率fH。

单位增益带宽BWG是指信号频率增加,使Aud下降到1时所对应的频率fT, 即Aud为0dB时的信号频率fT。它是集成运放的重要参数。741型运放的 fT=7Hz,是比较低的。

转换速率SR (压摆率)

转换速率SR 是指放大电路在电压放大倍数等于1的条件下,输入大信号(例如阶跃信号)时,放大电路输出电压对时间的最大变化速率,见图7-1-1。它反映了运放对于快 速变化的输入信号的响应能力。转换速率SR的表达式为

转换速率SR是在大信号和高频信号工作时的一项重要指标,目前一般通用型运放压摆 率在1~10V/μs左右。

图7-1-1   压摆率示意图

单位增益带宽BWG (fT)

共模抑制比KCMR

差模输入电阻

开环差模电压放大倍数Aud

----------------------------------------------------------------------

运算放大器的工作原理相关推荐

  1. 懂了!运算放大器的工作原理

    本文旨在学习如何快速简单地对运算放大器进行分析; 1 运算放大器(OPAMP) 2 虚短和虚断 3 反向放大器 3.1 典型电路 3.2 放大倍数 3.3 仿真结果 4 同向放大器 4.1 双电源 4 ...

  2. 模电--运算放大器工作原理

    模电 领悟1(关于正负反馈是通过瞬时极性法判断净输入量的增减,与净输入量的正负号无关,与他的量有关,增了就是正反馈:所谓的同相反相输入端是指相位,反相与同相相位差为180°,所以如果同相和反相加的是同 ...

  3. 运算放大器的基础原理

    运算放大器工作原理 作者:何富和时间:2015-03-22来源:电子产品世界 运算放大器基本上可以算得上是模拟电路的基本需要了解的电路之一,而要想更好用好运放,透彻地了解运算放大器工作原理是无可避免, ...

  4. 运算放大器工作原理是什么?

    转载自电子发烧友网站,下面是转载地址:http://www.elecfans.com/baike/bandaoti/bandaotiqijian/20100309184249.html 运算放大器工作 ...

  5. 运算放大器的原理/MOSFET工作原理/三极管工作原理/光耦工作原理

    参考下面了解运算放大器的基本原理 https://blog.csdn.net/cyousui/article/details/82936155?ops_request_misc=%257B%2522r ...

  6. STM32 之十六 深入了解 ADC 工作原理及参考电压变动的影响

    缘起   最近项目中用到了终端在仅有电流的情况下启动并正常工作的需要.此时需要先给系统充电,充电时间是毫秒级别.而 MCU 在 2V 基本就可以工作了,此时的 ADC 的基准电压也在 2V(使用的基准 ...

  7. 红外线人体感应灯arduino_红外线人体感应器的工作原理及电路设计

    随着物联网的发展,检测是否有人经过,或者检测人的动作,红外线人体感应器的应用原来越普及. 基本原理 红外线人体感应器是指当有人进入产品的感应范围之后用探测仪探测人体的变化.而本文将着重介绍红外线人体感 ...

  8. eja智能压力变送器工作原理_电量变送器是什么?电量变送器工作原理解析

    电量变送器的定义 电量变送器是一种将被测电量(交流电压.电流.有功功率.无功功率.有功电能.无功电能.频率.相位.功率因数.直流电压.电流等)转换成按线性比例直流电流或电压输出(电能脉冲输出)的测量仪 ...

  9. 详细解析集成运算放大电路比例运算的工作原理

    目录 1.工作原理 2.实际运用 1.工作原理 1.反相输入 输入信号从反相输入端引入的运算便是反相运算. 上图所示是反相比例运算电路.输入信号u1经过输入端电阻R1送到反相输入端.同向输入端通过电阻 ...

最新文章

  1. [leetcode] N-Queens II
  2. 如何解决Android SDK无法下载Package的问题(.net)
  3. powerdesigner 反向工程 oracle,PowerDesigner oracle 反向工程到cdm文件
  4. 同事操作两个数据源保持事务一致_终于有人把分布式事务说清楚了
  5. Atitit uke证件编码规范与范本
  6. 最新JCR期刊影响因子及分区情况(中科院SCI期刊分区表)
  7. python如何更新pip_[Python] 如何更新 PIP 到最新版本?
  8. 芝加哥顶级英语写作指南:Style Toward clarity and grace
  9. 一个微信账号只能开发一个微信小程序吗?
  10. 【环境部署】台式机安装CentOS7 全过程
  11. display lldp neighbor brief
  12. Xcode工程文件pbxproj
  13. 热更新Tinker研究(九):Dex文件的patch
  14. 以梦为马,不负韶华|电巢科技延安大学飞鹰计划实习班精彩回顾
  15. 嵌入式软件和python有关吗?
  16. 后仿真如何反标SDF文件
  17. 3D Max 软件重置和病毒查杀
  18. Flutter Alignment FractionalOffset AlignmentDirectional
  19. 微信小程序6位验证码功能实现
  20. 2021-10-08 存储扫盲01

热门文章

  1. WCDMA的R99版本网络结构
  2. window10系统下node管理工具nvm安装配置
  3. 动态秘钥分发(基于PKI)的方案论文详读
  4. 海报创意|十月的节日热点:国庆、重阳和万圣节
  5. S3C2440移植uboot之新建单板_时钟_SDRAM_串口
  6. c语言if语句教学设计,c语言if语句教学设计
  7. turnkey linux
  8. mysql frm 英文全称_考frm是全英文?
  9. c语言的整数和数学的整数有什么区别,自然数和整数的区别
  10. js自定义随机密码生成器