Riemann积分有两个局限:一是积分区间[a, b]必须有限;二是被积函数f(x)在积分区间[a, b]上有界。而反常积分(Improper Integral)就是对Riemann积分这两个局限的扩展,前者扩展后被称为“无穷积分”,后者扩展后被称为“瑕积分”。
  本节的内容属于“微积分的扩展”,课程中介绍的本就不太详细,主要讨论反常积分的“敛散性”我就不作扩展了,仅用Python辅助,展示课后练习和单元测试的解答。

#Exercise 7-7-1
from sympy import *
init_printing()
x = Symbol('x')
f = 1 / (1 + E ** x) ** 2
f, integrate(f, (x, 0, +oo))
(1(ex+1)2,−12+log(2))

\left ( \frac{1}{\left(e^{x} + 1\right)^{2}}, \quad - \frac{1}{2} + \log{\left (2 \right )}\right )

#Exercise 7-7-2
x = Symbol('x')
f = 1 / (x ** 2 + 4 * x + 9)
f, integrate(f, (x, -oo, +oo))
(1x2+4x+9,5√π5)

\left ( \frac{1}{x^{2} + 4 x + 9}, \quad \frac{\sqrt{5} \pi}{5}\right )

#Exercise 7-7-3
x = Symbol('x')
f = log(x) / (1 + x) ** 2
f, integrate(f, (x, 0, +oo))
(log(x)(x+1)2,0)

\left ( \frac{\log{\left (x \right )}}{\left(x + 1\right)^{2}}, \quad 0\right )

#Exercise 7-7-4
x = Symbol('x')
f = 1 / sqrt(abs((1 - x)))
f1 = 1 / sqrt(1 - x)
f2 = 1 / sqrt(x - 1)
f, integrate(f1, (x, 0, 1)),  integrate(f2, (x, 1, 2))
(1|x−1|−−−−−√,2,2)

\left ( \frac{1}{\sqrt{\left|{x - 1}\right|}}, \quad 2, \quad 2\right )

#Exercise 7-7-4
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
#x = np.array(filter(lambda t:t != 1, np.linspace(0, 2))).flatten()
x = np.linspace(0, 2)
t = np.asarray([1]).repeat(x.size)
y = 1 / np.sqrt(np.abs((t - x)))
plt.plot(x,y)
plt.show()

Exercise 7-7-5

∫10x1−x−−−−−√dx=?

\int_0^1 \sqrt{ \frac {x}{1-x}} \mathrm{d} x = ?
解:本题直接用sympy计算不出来,观察它的被积函数,其中含有2次根号,很容易相等“三角函数平方和/差公式”,令x=sin2(t) x = sin^2(t) ,得:

∫10x1−x−−−−−√dx=∫π20tan(t)d[sin2(t)]=2∫π20sin2(t)dt

\int_0^1 \sqrt{ \frac {x}{1-x}} \mathrm{d} x = \int_0^{\frac {\pi}{2}} tan(t) \mathrm{d} [sin^2(t)] = 2\int_0^{\frac {\pi}{2}} sin^2(t) \mathrm{d} t

#Exercise 7-7-3
x = Symbol('x')
f = sin(x) ** 2
2 * integrate(f, (x, 0, pi / 2))
π2

\frac{\pi}{2}

Exercise 7-7-6

∫+∞0dx(x+1)x2+1−−−−−√=?

\int_0^{+\infty} \frac {\mathrm{d} x}{(x+1)\sqrt{x^2 + 1}} = ?
解:同样地,用三角函数换元法

∫+∞0dx(x+1)x2+1−−−−−√=∫π20cos2(t)d[tan(t)]sin(t)+cos(t)=∫π20dtsin(t)+cos(t)=∫π20dt2√sin(t+π4)

\int_0^{+\infty} \frac {\mathrm{d} x}{(x+1)\sqrt{x^2 + 1}} = \int_0^{\frac {\pi}{2}} \frac {cos^2(t) \mathrm{d} [tan(t)]}{sin(t)+ cos(t)} \\ = \int_0^{\frac {\pi}{2}} \frac {\mathrm{d} t}{sin(t)+ cos(t)} = \int_0^{\frac {\pi}{2}} \frac {\mathrm{d} t}{\sqrt{2}sin(t + \frac{\pi}{4})}

#Exercise 7-7-6
x = Symbol('x')
f = 1 / (sqrt(2) * sin(x + pi / 4))
integrate(f, (x, 0, pi / 2))
2√2log(2√(2√2+1))−2√2log(2√(−2√2+1))

\frac{\sqrt{2}}{2} \log{\left (\sqrt{2} \left(\frac{\sqrt{2}}{2} + 1\right) \right )} - \frac{\sqrt{2}}{2} \log{\left (\sqrt{2} \left(- \frac{\sqrt{2}}{2} + 1\right) \right )}

Exercise 7-7-1b

∫+∞2dxxlnp(x)

\int_2^{+\infty} \frac {\mathrm{d} x}{xln^p(x)}
若上式收敛,求p的范围
解:运用“比阶判别法的极限形式”

limx→+∞xqf(x)=limx→+∞xq−1lnp(x)

\lim_{x \rightarrow + \infty} x^qf(x) = \lim_{x \rightarrow + \infty} \frac {x ^ {q-1}}{ln^p(x)}
要是这个极限存在,则 p≥q−1>1−1=0p \geq q - 1 > 1 - 1 = 0

Exercise 7-7-2b

∫+∞2dxx+x2+2−−−−−√

\int_2^{+\infty} \frac {\mathrm{d} x}{x + \sqrt{x^2 + 2}}
解:先看被积函数的性质

f(x)=1x+x2+2−−−−−√=12(x2+2−−−−−√−x)

f(x) = \frac {1}{x + \sqrt{x^2 + 2}} = \frac {1}{2}(\sqrt{x^2 + 2} - x)

f′(x)=12(xx2+2−−−−−√−1)=x−x2+2−−−−−√2x2+2−−−−−√<0

f'(x) = \frac {1}{2}(\frac {x}{\sqrt{x^2 + 2}} -1) = \frac {x - \sqrt{x^2 + 2}}{2\sqrt{x^2 + 2}}

limx→+∞f(x)=0

\lim_{x \rightarrow + \infty} f(x) = 0
因此,f(x)单调递减,且有下界,必收敛
运用“比阶判别法的极限形式”

limx→+∞xqf(x)=limx→+∞xpx+x2+2−−−−−√

\lim_{x \rightarrow + \infty} x^qf(x) = \lim_{x \rightarrow + \infty} \frac {x^p}{x + \sqrt{x^2 + 2}}
p=1时,这个极限值存在且不等于0,故该无穷积分发散

Exercise 7-7-3b

∫10ln(x)dx

\int_0^1 ln (x) \mathrm{d} x
解:运用瑕积分收敛判断(x−a)p(x-a)^p

limx→0+xp∗ln(x)

\lim_{x \rightarrow 0^+} x^p * ln(x)
当 p = -1 < 1 时,这个极限存在,故该瑕积分收敛

Exercise 7-7-4b

∫10ex1−x−−−−√dx

\int_0^1 \frac {e^x}{\sqrt{1-x}} \mathrm{d} x
解:运用瑕积分收敛判断(x−a)p(x-a)^p

limx→0+xp∗ex1−x−−−−√=limx→0+xp

\lim_{x \rightarrow 0^+} x^p * \frac {e^x}{\sqrt{1-x}} = lim_{x \rightarrow 0^+} x^p
当 0 < p < 1 时,这个极限存在,故该瑕积分收敛

#Exercise 7-7-5b
from sympy import *
init_printing()
x = Symbol('x')
for n in range(-1, 3):f = x ** (n) * E ** (-x)F = integrate(f, x)print(limit(F, x, +oo))

0
0
0
0

Unit Test 4-1
解:本题考察被积函数与原函数的关系。可以利用变上限积分将被积函数与原函数联系起来,假设其中一个积分限 a = 0

F(−x)=∫−x0f(t)dt=∫x0f(−u)d(−u)=−∫x0f(−u)du

F(-x) = \int_0^{-x} f(t)\mathrm{d}t = \int_0^{x} f(-u)\mathrm{d}(-u) = -\int_0^{x} f(-u)\mathrm{d}u
很明显,f(x)若为奇函数,F(x)将为偶函数。

#Unit Test 4-5
from sympy import *
init_printing()
x = Symbol('x')
f = cos(2 * x) / (1 + 1 / 2 * sin(2 * x))
integrate(f, x)
1.0log(0.5sin(2x)+1.0)

1.0 \log{\left (0.5 \sin{\left (2 x \right )} + 1.0 \right )}

Unit Test 4-6

∫arctan1x1+x2dx=?

\int \frac{arctan \frac{1}{x}}{1 + x^2} \mathrm{d} x = ?
解:三角函数换元,令x=tan(t),t=arctan(x) x = tan(t), t = arctan(x)

∫arctan1x1+x2dx=∫arctan1tan(t)1+tan2(t)d[tan(t)]=∫arctan1tan(t)dt=∫(π2−t)dt

\int \frac{arctan \frac{1}{x}}{1 + x^2} \mathrm{d} x = \int \frac{arctan \frac{1}{tan(t)}}{1 + tan^2(t)} \mathrm{d} [tan(t)] \\ = \int arctan \frac{1}{tan(t)} \mathrm{d} t = \int (\frac{\pi}{2} - t) \mathrm{d} t

Unit Test 4-7

∫dxex(1+e2x)=?

\int \frac{\mathrm{d} x}{e^x(1 + e^{2x})} = ?
解:先分解部分分式(partial fraction),再换元。其中分式分解也可以用sympy执行,如下代码

f(x)=1ex(1+e2x)=1ex−ex1+e2x

f(x) = \frac{1}{e^x(1 + e^{2x})} = \frac{1}{e^x} - \frac{e^x}{1 + e^{2x}}

#Unit Test 4-7
from sympy import *
init_printing()
x = Symbol('x')
expr = 1 / (x * (1 + x ** 2))
apart(expr)
−xx2+1+1x

- \frac{x}{x^{2} + 1} + \frac{1}{x}

t = E ** x
f = 1 / t
g = 1 / (1 + x ** 2)
integrate(f, x), integrate(g, x), integrate(f, x) - integrate(g, x).subs(x, E ** x) 
(−e−x,atan(x),−atan(ex)−e−x)

\left ( - e^{- x}, \quad \operatorname{atan}{\left (x \right )}, \quad - \operatorname{atan}{\left (e^{x} \right )} - e^{- x}\right )

#Unit Test 4-8
from sympy import *
init_printing()
x = Symbol('x')
f = 1 / (x ** 2 + 2 * x + 5)
integrate(f, x)
12atan(x2+12)

\frac{1}{2} \operatorname{atan}{\left (\frac{x}{2} + \frac{1}{2} \right )}

Unit Test 4-9

∫xdx(1+x2)1−x2−−−−−√=?

\int \frac{x\mathrm{d} x}{(1 + x^2) \sqrt{1 - x^2}} = ?
解:先凑微分,再三角函数替换。

∫xdx(1+x2)1−x2−−−−−√=∫dsin2(t)2[1+sin2(t)]1−sin2(t)−−−−−−−−−√=∫sin(t)cos(t)dt[1+sin2(t)]cos(t)=−∫dcos(t)2−cos2(t)

\int \frac{x\mathrm{d} x}{(1 + x^2) \sqrt{1 - x^2}} = \int \frac{\mathrm{d} sin^2(t)}{2[1 + sin^2(t)] \sqrt{1 - sin^2(t)}} \\ = \int \frac{sin(t)cos(t)\mathrm{d} t}{[1 + sin^2(t)] cos(t)} = -\int \frac{\mathrm{d} cos(t)}{2 - cos^2(t)}
注意,本题经过了两次换元,求出原函数后要换回去,如下代码

#Unit Test 4-9
from sympy import *
init_printing()
x = Symbol('x')
f = - 1 / ( 2 - x ** 2)
integrate(f, x).subs(x, cos(x)).subs(x, asin(x))
2√4log(−x2+1−−−−−−−√−2√)−2√4log(−x2+1−−−−−−−√+2√)

\frac{\sqrt{2}}{4} \log{\left (\sqrt{- x^{2} + 1} - \sqrt{2} \right )} - \frac{\sqrt{2}}{4} \log{\left (\sqrt{- x^{2} + 1} + \sqrt{2} \right )}

Unit Test 4-10

∫x2−9−−−−−√x2dx=?

\int \frac{\sqrt{x^2 - 9}}{x^2} \mathrm{d} x = ?
解:先有理化,再三角换元

∫x2−9−−−−−√x2dx=∫uu2+9du2+9−−−−−√=∫3tan(θ)9tan2θ+9d9tan2θ+9−−−−−−−−−√=∫tan(θ)sec2θdsec(θ)=∫sin2θcos(θ)dθ=∫1cos(θ)dθ−∫cos(θ)dθ

\int \frac{\sqrt{x^2 - 9}}{x^2} \mathrm{d} x = \int \frac{u}{u^2 + 9} \mathrm{d} \sqrt{u^2 + 9} \\ = \int \frac{3tan(\theta)}{9tan^2 \theta + 9} \mathrm{d} \sqrt{9tan^2 \theta + 9} \\ = \int \frac{tan(\theta)}{sec^2 \theta} \mathrm{d} sec (\theta) = \int \frac{sin^2\theta}{cos (\theta)} \mathrm{d} \theta \\ = \int \frac{1}{cos (\theta)} \mathrm{d} \theta - \int cos (\theta) \mathrm{d} \theta

#Unit Test 4-10
from sympy import *
init_printing()
x = Symbol('x')
f = 1 / cos(x) - cos(x)
integrate(f, x).subs(x, atan(1 / 3 * x)).subs(x, sqrt(x ** 2 - 9))
−1.0x2−−√x2−9−−−−−√−12log(1.0x2−−√x2−9−−−−−√−1)+12log(1.0x2−−√x2−9−−−−−√+1)

- \frac{1.0}{\sqrt{x^{2}}} \sqrt{x^{2} - 9} - \frac{1}{2} \log{\left (\frac{1.0}{\sqrt{x^{2}}} \sqrt{x^{2} - 9} - 1 \right )} + \frac{1}{2} \log{\left (\frac{1.0}{\sqrt{x^{2}}} \sqrt{x^{2} - 9} + 1 \right )}

#Unit Test 4-11
from sympy import *
init_printing()
x = Symbol('x')
f = 1 / (1 + x + x ** 2)
integrate(f, x).subs(x, 2 ** x) / log(2)
23√atan(23√32x+3√3)3log(2)

\frac{2 \sqrt{3} \operatorname{atan}{\left (\frac{2 \sqrt{3}}{3} 2^{x} + \frac{\sqrt{3}}{3} \right )}}{3 \log{\left (2 \right )}}

Unit Test 4-12

In=∫dxxnx2+1−−−−−√

I_n = \int \frac{\mathrm{d} x}{x^n \sqrt{x^2 + 1}}
求上式的递推公式
解:很显然,要应用“分部积分法”

In−2=∫dxxn−2x2+1−−−−−√=∫dx2+1−−−−−√xn−1=x2+1−−−−−√xn−1−∫x2+1−−−−−√dx1−n=x2+1−−−−−√xn−1+(n−1)∫x2+1−−−−−√xndx=x2+1−−−−−√xn−1+(n−1)∫x2+1xnx2+1−−−−−√dx=x2+1−−−−−√xn−1+(n−1)(In+In−2)

I_{n-2} = \int \frac{\mathrm{d} x}{x^{n-2} \sqrt{x^2 + 1}} = \int \frac{\mathrm{d} \sqrt{x^2 + 1}}{x^{n-1} } \\ = \frac{\sqrt{x^2 + 1}}{x^{n-1} } - \int \sqrt{x^2 + 1}\mathrm{d}x^{1-n} \\ = \frac{\sqrt{x^2 + 1}}{x^{n-1} } + (n-1) \int \frac{\sqrt{x^2 + 1}}{x^n} \mathrm{d}x \\ = \frac{\sqrt{x^2 + 1}}{x^{n-1} } + (n-1) \int \frac{x^2 + 1}{x^n\sqrt{x^2 + 1}} \mathrm{d}x \\ = \frac{\sqrt{x^2 + 1}}{x^{n-1} } + (n-1)(I_{n} + I_{n-2})

Unit Test 4-13

∫dxx(x10+1)=?

\int \frac{\mathrm{d} x}{x(x^{10} + 1)} = ?
解:很显然,这是一个“Partial Fraction” (部分分式)的积分,要先进行分式分解

f(x)=1x(x10+1)=1x−x5x2+5−x(4x6−3x4+2x2−1)5x8−5x6+5x4−5x2+5

f(x) = \frac{1}{x(x^{10} + 1)} = \frac{1}{x} - \frac{x}{5x^2+5} - \frac{x(4x^6-3x^4+2x^2-1)}{5x^8-5x^6+5x^4-5x^2+5}
然后根据第二三项的特点进行“凑微分和换元”,凑成x2 x^2

#Unit Test 4-13
from sympy import *
init_printing()
x = Symbol('x')
f = 1 / (x ** 11 + x)
apart(f), integrate(f, x)
(−x(4x6−3x4+2x2−1)5x8−5x6+5x4−5x2+5−x5x2+5+1x,log(x)−110log(x10+1))

\left ( - \frac{x \left(4 x^{6} - 3 x^{4} + 2 x^{2} - 1\right)}{5 x^{8} - 5 x^{6} + 5 x^{4} - 5 x^{2} + 5} - \frac{x}{5 x^{2} + 5} + \frac{1}{x}, \quad \log{\left (x \right )} - \frac{1}{10} \log{\left (x^{10} + 1 \right )}\right )

#Unit Test 4-14
from sympy import *
init_printing()
x = Symbol('x')
f = (x ** 2 + 1) * E ** (2 * x)
integrate(f, x)
e2x4(2x2−2x+3)

\frac{e^{2 x}}{4} \left(2 x^{2} - 2 x + 3\right)

#Unit Test 4-15
from sympy import *
init_printing()
x = Symbol('x')
f = x ** 2 * acos(x)
integrate(f, x)
x33acos(x)−x29−x2+1−−−−−−−√−29−x2+1−−−−−−−√

\frac{x^{3}}{3} \operatorname{acos}{\left (x \right )} - \frac{x^{2}}{9} \sqrt{- x^{2} + 1} - \frac{2}{9} \sqrt{- x^{2} + 1}

Unit Test 4-16

∫dxx√+x√3=?

\int \frac{\mathrm{d} x}{\sqrt{x} + \sqrt[3]{x}} = ?
解:先有理化

∫dxx√+x√3=∫dt6t3+t2=∫6x5dtt3+t2

\int \frac{\mathrm{d} x}{\sqrt{x} + \sqrt[3]{x}} = \int \frac{\mathrm{d} t^6}{t^3 + t^2} = \int \frac{6x^5\mathrm{d} t}{t^3 + t^2}

#Unit Test 4-16
from sympy import *
init_printing()
x = Symbol('x')
f = 6 * x ** 5 / (x ** 2 + x ** 3)
integrate(f, x).subs(x, x ** (1 / 6))
6x0.166666666666667−3x0.333333333333333+2x0.5−6log(x0.166666666666667+1)

6 x^{0.166666666666667} - 3 x^{0.333333333333333} + 2 x^{0.5} - 6 \log{\left (x^{0.166666666666667} + 1 \right )}

Unit Test 4-17

∫x+1x−−−−−√dx=?

\int \sqrt {\frac{x+1}{x}} \mathrm{d} x = ?
解:先有理化

∫x+1x−−−−−√dx=∫tan2(t)+1tan2(t)−−−−−−−−−−√dtan2(t)

\int \sqrt {\frac{x+1}{x}} \mathrm{d} x = \int \sqrt {\frac{tan^2(t)+1}{tan^2(t)}} \mathrm{d} tan^2(t)

#Unit Test 4-17
from sympy import *
init_printing()
x = Symbol('x')
f = diff(tan(x) ** 2, x)
g = 2 / (cos(x) ** 3)
f, integrate(g, x).subs(x, atan(x))
⎛⎝⎜(2tan2(x)+2)tan(x),−2xx2+1−−−−−√(2x2x2+1−2)−12log(xx2+1−−−−−√−1)+12log(xx2+1−−−−−√+1)⎞⎠⎟

\left ( \left(2 \tan^{2}{\left (x \right )} + 2\right) \tan{\left (x \right )}, \quad - \frac{2 x}{\sqrt{x^{2} + 1} \left(\frac{2 x^{2}}{x^{2} + 1} - 2\right)} - \frac{1}{2} \log{\left (\frac{x}{\sqrt{x^{2} + 1}} - 1 \right )} + \frac{1}{2} \log{\left (\frac{x}{\sqrt{x^{2} + 1}} + 1 \right )}\right )

Unit Test 4-18

∫dxex+1−−−−−√+ex−1−−−−−√=?

\int \frac{\mathrm{d} x }{\sqrt{e^x+1}+\sqrt{e^x-1}} = ?
解:先有理化,再分部积分

∫dxex+1−−−−−√+ex−1−−−−−√=∫ex+1−−−−−√−ex−1−−−−−√2dx=12∫ex+1−−−−−√dx−12∫ex−1−−−−−√dx=12∫tdln(t2−1)−12∫udln(u2+1)=12[t∗ln(t2−1)−∫ln(t2−1)dt−u∗ln(u2+1)+∫ln(u2+1)du]

\int \frac{\mathrm{d} x }{\sqrt{e^x+1}+\sqrt{e^x-1}} = \int \frac{\sqrt{e^x+1}-\sqrt{e^x-1}}{2} \mathrm{d} x \\ = \frac{1}{2}\int \sqrt{e^x+1} \mathrm{d} x - \frac{1}{2}\int \sqrt{e^x-1} \mathrm{d} x \\ = \frac{1}{2}\int t \mathrm{d} ln(t^2 -1) - \frac{1}{2}\int u \mathrm{d} ln(u^2 +1) \\ = \frac{1}{2}[t * ln(t^2 -1) - \int ln(t^2 -1) \mathrm{d} t - u * ln(u^2 +1) + \int ln(u^2 +1)\mathrm{d} u]

#Unit Test 4-18
from sympy import *
init_printing()
x = Symbol('x')
f = log(x ** 2 -1)
g = log(x ** 2 + 1)
integrate(f, x), integrate(g, x)
(xlog(x2−1)−2x−log(x−1)+log(x+1),xlog(x2+1)−2x+2atan(x))

\left ( x \log{\left (x^{2} - 1 \right )} - 2 x - \log{\left (x - 1 \right )} + \log{\left (x + 1 \right )}, \quad x \log{\left (x^{2} + 1 \right )} - 2 x + 2 \operatorname{atan}{\left (x \right )}\right )

part1 = x * f - integrate(f, x)
part2 = x * g - integrate(g, x)
part1.subs(x, sqrt(E ** x + 1)) - part2.subs(x, sqrt(E ** x - 1))
−2ex−1−−−−−√+2ex+1−−−−−√+log(ex+1−−−−−√−1)−log(ex+1−−−−−√+1)+2atan(ex−1−−−−−√)

- 2 \sqrt{e^{x} - 1} + 2 \sqrt{e^{x} + 1} + \log{\left (\sqrt{e^{x} + 1} - 1 \right )} - \log{\left (\sqrt{e^{x} + 1} + 1 \right )} + 2 \operatorname{atan}{\left (\sqrt{e^{x} - 1} \right )}

Unit Test 4-19

∫sin(x)1+sin(x)dx=?

\int \frac{sin(x)}{1 + sin(x)} \mathrm{d} x = ?
解:简化分式

∫sin(x)1+sin(x)dx=∫dx−∫11+sin(x)dx

\int \frac{sin(x)}{1 + sin(x)} \mathrm{d} x = \int \mathrm{d} x - \int \frac{1}{1 + sin(x)} \mathrm{d} x

#Unit Test 4-19
from sympy import *
init_printing()
x = Symbol('x')
f = 1 / (sin(x) + 1)
integrate(f, x)
−2tan(x2)+1

- \frac{2}{\tan{\left (\frac{x}{2} \right )} + 1}

Unit Test 4-20

∫x21+x2atan(x)dx=?

\int \frac{x^2}{1 + x^2} atan(x)\mathrm{d} x = ?
解:简化分式

∫x21+x2atan(x)dx=∫x2atan(x)datan(x)=12∫x2(x2+1)datan2(x)=12[x2(x2+1)∗atan2(x)−∫atan2(x)dx2(x2+1)]=12[x2(x2+1)∗atan2(x)−4∫atan2(x)∗x3dx−2∫atan2(x)∗xdx]

\int \frac{x^2}{1 + x^2} atan(x)\mathrm{d} x = \int x^2 atan(x)\mathrm{d} atan(x) \\ = \frac{1}{2} \int x^2(x^2 + 1) \mathrm{d} atan^2(x) \\ = \frac{1}{2}[x^2(x^2 + 1) * atan^2(x) - \int atan^2(x) \mathrm{d} x^2(x^2 + 1)] \\ = \frac{1}{2}[x^2(x^2 + 1) * atan^2(x) - 4\int atan^2(x) * x^3 \mathrm{d} x - 2\int atan^2(x) * x \mathrm{d} x]

#Unit Test 4-19
from sympy import *
init_printing()
x = Symbol('x')
f = atan(x) ** 2 * x
integrate(f, x)
x22atan2(x)−xatan(x)+12log(x2+1)+12atan2(x)

\frac{x^{2}}{2} \operatorname{atan}^{2}{\left (x \right )} - x \operatorname{atan}{\left (x \right )} + \frac{1}{2} \log{\left (x^{2} + 1 \right )} + \frac{1}{2} \operatorname{atan}^{2}{\left (x \right )}

g = f * x ** 2
integrate(g, x)
x44atan2(x)−x36atan(x)+x212+x2atan(x)−13log(x2+1)−14atan2(x)

\frac{x^{4}}{4} \operatorname{atan}^{2}{\left (x \right )} - \frac{x^{3}}{6} \operatorname{atan}{\left (x \right )} + \frac{x^{2}}{12} + \frac{x}{2} \operatorname{atan}{\left (x \right )} - \frac{1}{3} \log{\left (x^{2} + 1 \right )} - \frac{1}{4} \operatorname{atan}^{2}{\left (x \right )}

simplify(atan(x) ** 2 * (x ** 4 + x ** 2) - 4 * integrate(g, x) - 2 * integrate(f, x))
2x33atan(x)−x23+13log(x2+1)

\frac{2 x^{3}}{3} \operatorname{atan}{\left (x \right )} - \frac{x^{2}}{3} + \frac{1}{3} \log{\left (x^{2} + 1 \right )}

用Python学《微积分B》(反常积分)相关推荐

  1. python 微积分_《用 Python 学微积分》笔记 2

    <用 Python 学微积分>原文见参考资料 1. 13.大 O 记法 比较两个函数时,我们会想知道,随着输入值 x 的增长或减小,两个函数的输出值增长或减小的速度究竟谁快谁慢.通过绘制函 ...

  2. 《用 Python 学微积分》笔记 3

    <用 Python 学微积分>原文见参考资料 1. 16.优化 用一个给定边长 4 的正方形来折一个没有盖的纸盒,设纸盒的底部边长为 l,则纸盒的高为 (4-l)/2,那么纸盒的体积为: ...

  3. python 微积分 函数_用Python学微积分(2)---复合函数

    函数的复合(Composition) 定义:设函数y=f(u)和u=g(x)u=g(x),则函数y=f[g(x)]称为由y=f(u)和u=g(x)复合而成的复合函数,其中函数y=f(u)常常称为外函数 ...

  4. python用泰勒级数计算圆周率_用Python学微积分(4)---泰勒级数

    泰勒级数(Taylor Sries) 现在是时候说明指数函数和三角函数那些奇妙的多项式形式了. 这些多项式实际为这些函数在x=0处展开的泰勒级数. 下面我先不加预告地列出函数f(x)在x=0处展开地泰 ...

  5. python计算微积分_用Python学微积分---函数

    一.什么是函数? 广义上说下面这个就叫函数,因为每当我们向机器提供豆子,这台机器便会输出豆浆. 所有输入的集合(集合的本质特点:无序重合)称为定义域(domain),其所有可能输出的集合称为值域(ra ...

  6. python @符号_用Python学数学之Sympy代数符号运算

    在我们初.高中和大学近10年的学习时间里,数学一直占据着非常大的分量,但是回忆过去可以发现,我们把大量的时间都花在反复解题.不断运算上,计算方法.运算技巧.笔算能力以及数学公式的记忆仿佛成了我们学习数 ...

  7. python数学符号代码_用Python学数学之Sympy代数符

    在我们初.高中和大学近10年的学习时间里,数学一直占据着非常大的分量,但是回忆过去可以发现,我们把大量的时间都花在反复解题.不断运算上,计算方法.运算技巧.笔算能力以及数学公式的记忆仿佛成了我们学习数 ...

  8. 用Python学数学之Sympy代数符号运算

    在我们初.高中和大学近10年的学习时间里,数学一直占据着非常大的分量,但是回忆过去可以发现,我们把大量的时间都花在反复解题.不断运算上,计算方法.运算技巧.笔算能力以及数学公式的记忆仿佛成了我们学习数 ...

  9. python符号计算_用Python学数学之Sympy代数符号运算

    在我们初.高中和大学近10年的学习时间里,数学一直占据着非常大的分量,但是回忆过去可以发现,我们把大量的时间都花在反复解题.不断运算上,计算方法.运算技巧.笔算能力以及数学公式的记忆仿佛成了我们学习数 ...

  10. 自学python到什么程度可以找工作-Python学到什么程度可以找到工作

    凡是找不到工作的,能力都没有达到公司对初级程序员的最低要求. 目前Python 职位很多,用排除法,适合完全小白转到初级程序员 只有二种职位比较适合:web开发.爬虫 那么...Python学到什么程 ...

最新文章

  1. SCRIPT1028:缺少标识符、字符串或数字 jquery ajax
  2. 车辆动力学基础(1)
  3. Python算法——二叉树
  4. 影视小程序附带搭建教材
  5. 01章.计算机网络概述(1.1~1.6)
  6. TestNG中使用监听
  7. java 计数器越界,[总结]-第二章 Java内存区域与内存溢出异常
  8. unity三维地球实现方法
  9. Unity EasyAR 使用自定义UVC相机(安卓)
  10. centos7克隆机修改ip地址,并与另一台虚拟机ping起来
  11. httpd-2.4.46 (apache) 基于网络源码包安装
  12. Unity3D iPhone开发入门 (转)iPhoneSettings.
  13. 【Java练习】2022个人所得税计算
  14. 一个炫酷的二维码生成项目附源码
  15. 生日悖论问题——《算法导论学习笔记》
  16. 这么多嵌入式设计创意,哪个你曾想过?
  17. kcp 介绍与源代码分析_kcp介绍
  18. java oop6_Java oop代码6(原创方法):5道用上extends继承,子类,父类的题
  19. Win10蓝牙开关突然消失不见 已经解决方法2023.2.11
  20. 迟到的认可:计算机科学之父图灵将登50英镑新钞

热门文章

  1. linux下的二进制文件比较命令cmp
  2. 朴素的矩阵行列式计算之C++实现
  3. “农业农村大数据公共平台基座”市县级平台1.0版本正式上线
  4. 情迁红包配合情迁QQ机器人新版作为插件加载的使用教程
  5. 好消息:Win11任务栏相同程序可以选择不合并了!
  6. 【系统分析师之路】2017年系统分析师下午案例分析真题
  7. Linux 安装宝塔
  8. Vue中使用mixin
  9. 低价电动车,特斯拉的阳谋
  10. 工业镜头外部主要参数(视场、分辨率、工作距离、景深)介绍