一、导学

机器学习:实现人工智能的手段,利用数据或经验进行学习,改善具体算法的性能。

机器学习分类

监督学习(Supervised Learning)从给定的数据集中学习出一个函数,当新的数据到来时,通过函数预测结果。训练集通常由人工标注。

无监督学习(Unsupervised Learning)训练集没有人标注的结果。

半监督学习(Semi-supervised Learning)介于监督学习和无监督学习之间

强化学习(Reinforcement Learning 增强学习) 通过观察来执行什么样的动作来获得最好的回报,每个动作都会对环境有所影响。学习对象根据观察到的周围环境反馈做出判断。

深度学习(Deep Learning)利用深层神经网络模型抽象数据的表示特征。

sklearn模块

scikit-learn :简称sklearn,是第三方模块,集成了常用机器学习方法,只需简单调用就能完成大多数机器学习任务。sklearn库是在Numpy,SciPy和matplotlib库的基础上开发而成,在安装sklearn前,需先安装这些依赖库。scikit-learn官网副标题为Machine Learning in Python

sklearn的安装:   安装顺序为Numpy库—Scipy库—matplotlib库—sklearn库(依据python版本下载对应的文件,https://pypi.python.org/pypi/scikit-learn/0.18.1)

sklearn库的基本功能:分类任务、回归任务、 聚类任务、降维任务、模型选择、数据预处理。

聚类任务

K-means:cluster.KMeans    AP聚类:cluster.AffinityPropagation  (聚类模型:加载模块)

均值漂移:cluster.MeanShift    层次聚类:cluster.AgglomerativeClustering

DBSCAN:cluster.DBSCAN    BIRCH:cluster.Brich   谱聚类:cluster.SpectralClustering

降维任务

主成分分析 :decomposition.PCA   截断SVD和LSA :decomposition.TruncatedSVD

字典学习:decomposition.SparseCorder   因子分析:decomposition.FactorAnalysis

独立成分分析 :decomposition.FastlCA   非负矩阵分解:decomposition.NMF

LDA: decomposition.LatentDirchletAllocation

分类任务

最近邻算法:neighbors.NearestNeighbors 支持向量机:svm.SVC

朴素贝叶斯:naive_bayes.GaussianNB   决策树:tree.DecisionTreeClassifier

集成方法:ensemble.BaggingClassifier   神经网络:neural_network.MLPClassifier

回归任务

岭回归:linear_model.Ridge   Lasso回归:linear_model.Lasso

弹性网络:linear_model.ElasticNet   最小角回归:linear_model.Lars

贝叶斯回归:linear_model.BayesianRidge   逻辑回归:linear_model.LogisticRegression

多项式回归:linear_model.PolynomialFeatures


sklearn数据集

from sklearn.datasets import load_iris

小数据集:波士顿房价数据集(回归---load_boston())、鸢尾花数据集(分类---load_iris())、糖尿病数据集(回归---load_diabetes())、手写数字数据集(分类---load_digits())

大数据集:Olivetti脸部图像数据集(降维---fetch_olivetti_faces())、新闻分类数据集(分类---fetch_20newsgroups())、带标签的人脸数据集(分类,降维---fetch_lfw_people())、路透社新闻语料收集库(分类---fetch_rcv1())    小数据集可直接使用,大数据要在调用时程序自动下载(一次即可)

波士顿房价数据集:应用于回归问题。包含506组数据。用sklearn.datasets.load_boston可加载相关数据集 ,重要参数为return_X_y:表示是否返回target(即价格),默认为False, 只返回data(即属性)。

鸢尾花数据集:用于多分类问题,采集鸢尾花测量数据(萼片长度、萼片宽度、花瓣长度、花瓣宽度)及其所属类别(Iris Setosa,Iris Versicolour,Iris Virginica)。使用sklearn.datasets. load_iris加载数据集。参数有return_X_y:若为True,以(data, target)形式返回数据;默认为False,以字典形式返回数据全部信息(包括 data和target)。

手写数字数据集:包括1797个0-9的手写数字数据,每个数字由8*8 大小的矩阵构成,矩阵中值的范围是0-16,代表颜色的深度。使用sklearn.datasets.load_digits即可加载相关数据集 ,参数包括return_X_yn_class表示返回数据的类别数,如:n_class=5,则返回0到4的数据样本。


二、无监督学习

无监督学习:利用无标签数据学习数据的分布或数据与数据之间的关系。有监督学习和无监督学习的最大区别在于数据是否有标签;无监督学习最常应用的场景是聚类和降维。

1.聚类(clustering)

根据数据的“相似性”将数据分为多类。评估两个不同样本之间的“相似性” ,通常方法为计算两个样本之间的“距离”。 用不同的方法计算样本间的距离会关系到聚类结果的好坏。

常用的聚类方法:欧氏距离、曼哈顿距离、马氏距离、夹角余弦

sklearn vs. 聚类:sklearn提供聚类算法函数在sklearn.cluster模块中,同样的数据集应用于不同的算法,有不同结果,所耗时间也不相。(DBSCAN:相对快速,近邻传播算法时间较长)

sklearn.cluster输入数据形式,标准数据输入格式:[样本个数,特征个数]定义的矩阵形式;相似性矩阵输入格式:由[样本数目]定义的矩阵形式,矩阵中每个元素为两个样本相似度

算法 参数 可拓展性 相似性度量
K-means 聚类个数 大规模数据 点间距离
DBSCAN 邻域个数及其他超参 大规模数据 点间距离
Gaussian Mixtures 聚类个数及其他超参 复杂,不适合大规模数据 马氏距离
Brich 分支因子、阈值等其他超参 大规模数据 两点间的欧氏距离

(1)K-means方法及应用

K-Means所需参数:n_clusters:用于指定聚类中心的个数;init:初始聚类中心的初始化方法 ;max_iter:最大的迭代次数(一般调用时只用给出n_clusters即可,init默认是k-means++,max_iter默认是00);.data:加载的数据;label:聚类后各数据所属的标签 ;fit_predict( ):计算簇中心以及为簇分配序号。

(1)从n个样本对象任意选择k个对象作为初始聚类中心;
(2)根据在步骤 (1) 中设置的k个聚类中心,计算每个对象与这k个中心的距离;
(3)经过步骤 (2) 的计算,所有对象与这个k个中心的距离就计算出来了,接着把所有对象与离它最近的中心归在一个类簇中;
(4)重新计算每个类簇的中心对象的位置;
(5)重复步骤 (3) 和 (4),直到类簇聚类方案中的对象归类几乎不发生变化为止。

案例1:对全国31个省份城镇居民家庭平均每人全年消费性支出的八个主要变量数据进行聚类。

过程:1.建立工程,导入sklearn相关包( numpy / KMeans)2.加载数据,创建K-means算法实例,并进行训练,获得标签。3.输出标签,查看结果。

import numpy as np
from sklearn.cluster import KMeans    def loadData(filePath):fr = open(filePath,'r+')                         #r+读写打开一个文本文件lines = fr.readlines()                           #readlines()一次读取整个文件retData = []                                     #readData用来存储城市的各项消费信息retCityName = []                                 #retCityName用来存储城市名称for line in lines:items = line.strip().split(",")retCityName.append(items[0])retData.append([float(items[i]) for i in range(1,len(items))])return retData,retCityName                       #返回城市名称和城市的各项消费信息if __name__ == '__main__':data,cityName = loadData('city.txt')             #利用loadData方法读取数据km = KMeans(n_clusters=4)label = km.fit_predict(data)                     #调用Kmeans()fit_predict()方法进行计算expenses = np.sum(km.cluster_centers_,axis=1)    #print(expenses)CityCluster = [[],[],[],[]]                      #将城市按label分成设定的簇for i in range(len(cityName)):CityCluster[label[i]].append(cityName[i])    #将每个簇的城市输出for i in range(len(CityCluster)):print("Expenses:%.2f" % expenses[i])         #将每个簇的平均花费输出print(CityCluster[i])
Expenses:5477.90
['天津', '江苏', '浙江', '福建', '重庆', '云南', '西藏']
Expenses:3696.84
['河北', '山西', '内蒙古', '吉林', '黑龙江', '江西', '河南', '陕西', '甘肃', '青海', '宁夏', '新疆']
Expenses:7754.66
['北京', '上海', '广东']
Expenses:4290.59
['辽宁', '安徽', '山东', '湖南', '湖北', '广西', '海南', '四川', '贵州']

案例2:基于经纬度对城市进行聚类

#导入模块
import pandas as pd
import numpy as np
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt#读入数据
df = pd.read_csv('China_cities.csv')
print(df.head())#数据预处理(只留下x,y坐标)
x = df.drop('省级行政区',axis=1)#pandas中.drop()函数用于删除,axis=0指删除index,删除columns时要指定axis=1
x = x.drop('城市',axis=1)
x_np = np.array(x)
print(x_np)#模型构建与训练
n_clusters = 7   #类簇的数量
estimator = KMeans(n_clusters) #构建聚类器
estimator.fit(x) #训练K-Means聚类器#数据可视化
markers = ['*','v','+','^','s','x','o']#标记样式列表
colors = ['r','g','m','c','y','b','orange']#标记颜色列表
labels = estimator.labels_  #获得聚类标签plt.figure(figsize=(9,6))
plt.title('Major Cities in China',fontsize=25)
plt.xlabel('East Longitude',fontsize=18)
plt.ylabel('North Latitude',fontsize=18)for i in range(n_clusters):members = labels == i #members是一个布尔型数组plt.scatter(  #绘制散点图x_np[members,1], #经度数组x_np[members,0], #维度数组marker = markers[i], #标记样式c = colors[i] #标记颜色)plt.grid() #显示网格线
plt.savefig('China_cities.png',bbox_inches='tight')

原文链接:https://blog.csdn.net/TXK_Kevin/article/details/113714825

拓展与改进:计算两条数据相似性时,Sklearn 的K-Means默认用的是欧式距离。虽然还有余弦相 似度,马氏距离等多种方法,但没有设定计算距离方法的参数。

(2)DBSCAN方法及应用

DBSCAN是基于密度的算法,聚类时不需预先指定簇的个数,最终簇的个数不定。DBSCAN将数据分为3类:核心点、边界点、噪音点。

DBSCAN主要参数eps:两个样本被看作邻居节点的最大距离;min_samples:簇的样本数;metric:距离计算方式;如sklearn.cluster.DBSCAN(eps=0.5,min_samples=5,metric='euclidean')

优势:1.不需要指定簇个数;2.可以发现任意形状的簇;3.擅长找到离群点(检测任务);4.两个参数就够了

劣势:1.高维数据有些困难(可以做降维);2.参数难以选择(参数对结果的影响很大);3.Sklearn中效率很慢(数据削减策略)

类似于传销组织发展下线,边界点是无法圈到其他下线,只有上线没有下线;离群点可用于异常检测

可视化:https://www.naftaliharris.com/blog/visualizing-dbscan-clustering/ 

取Eps=3(半径),MinPts=3(个数),对所有点进行聚类(曼哈顿距离),计算每个点其领域Eps=3内的点的集合。集合内点的个数超过MinPts=3的点为核心点。核心点的邻域内为边界点,否则为噪声点(橙色点为核心点,蓝色点为边界点,黑色点为噪声点)—— 将距离不超过Eps=3的点相互连接,构成一个簇,核心点领域内的点也会被加入到这个簇中。

将每个点以Eps为半径画圆,若圆内的点的个数>=MinPTs,则可认为圆心点为核心点,圆内的其他点为边界点,不在圆内为噪音点。去噪。距离不超过Eps=3的点相互连接,构成一个簇,一个簇中可能有多个核心点。成簇

 

在eps邻域和minPoints的基础上,描述样本的紧密相连: 上面3幅图分别表示:密度直达(Y到X是密度直达的,X在核心样本Y的邻域内);密度可达(Y到X建立的关系为密度可达,核心点---其他点);密度相连(X和Y是密度相连,其他点---其他点)

案例1:有290条大学生校园网使用情况数据,分析学生上网时间和上网时长的模式。

过程:1.建立工程,导入sklearn相关包。2.读入数据并进行处理。3.上网时间聚类,创建DBSCAN算法实例,并进行训练,获得标签。4.输出标签,查看结果。5.画直方图,分析实验结果。

#上网时间聚类
import numpy as np
import sklearn.cluster as skc
from sklearn import metrics
import matplotlib.pyplot as pltmac2id=dict()   #创建一个字典
onlinetimes=[]
f=open('TestData.txt',encoding='utf-8')
for line in f:mac=line.split(',')[2]      #读取mac地址,mac为变量,存储一个数,但后面的mac在for循环体内,会对所有的mac数进行处理onlinetime=int(line.split(',')[6])    #读取上网时长(15)starttime=int(line.split(',')[4].split(' ')[1].split(':')[0])  #读取结束时间的时间点-小时(23)2014-07-20 23:10:16.540000000if mac not in mac2id:   #字典的函数:not in,判断键是否在字典中mac2id[mac]=len(onlinetimes)      #mac2id是一个字典,key是mac地址,value是上网时长及开始上网时间onlinetimes.append((starttime,onlinetime))else:onlinetimes[mac2id[mac]]=[(starttime,onlinetime)]
real_X=np.array(onlinetimes).reshape((-1,2))X=real_X[:,0:1]db=skc.DBSCAN(eps=0.01,min_samples=20).fit(X)   #fix()函数用于计算均值和标准差
labels = db.labels_     #labels_属性记载了样本对应的cluster编号,其中编号为-1的为噪音点                        #调用DBSCAN方法进行训练,labels为每个数据的簇标签
print('Labels:')
print(labels)
raito=len(labels[labels[:] == -1]) / len(labels)
print('Noise raito:',format(raito, '.2%'))    #打印数据被记上的标签,计算标签为-1,即噪声数据的比例
n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0)print('Estimated number of clusters: %d' % n_clusters_)
print("Silhouette Coefficient: %0.3f"% metrics.silhouette_score(X, labels))#计算簇的个数并打印,评价聚类效果
for i in range(n_clusters_):print('Cluster ',i,':')print(list(X[labels == i].flatten()))#打印各簇标号以及各簇内数据
plt.hist(X,24)                   #转换为直方图分析
Labels:
[ 0 -1  0  1 -1  1  0  1  2 -1  1  0  1  1  3 -1 -1  3 -1  1  1 -1  1  34 -1  1  1  2  0  2  2 -1  0  1  0  0  0  1  3 -1  0  1  1  0  0  2 -11  3  1 -1  3 -1  3  0  1  1  2  3  3 -1 -1 -1  0  1  2  1 -1  3  1  12  3  0  1 -1  2  0  0  3  2  0  1 -1  1  3 -1  4  2 -1 -1  0 -1  3 -10  2  1 -1 -1  2  1  1  2  0  2  1  1  3  3  0  1  2  0  1  0 -1  1  13 -1  2  1  3  1  1  1  2 -1  5 -1  1  3 -1  0  1  0  0  1 -1 -1 -1  22  0  1  1  3  0  0  0  1  4  4 -1 -1 -1 -1  4 -1  4  4 -1  4 -1  1  22  3  0  1  0 -1  1  0  0  1 -1 -1  0  2  1  0  2 -1  1  1 -1 -1  0  11 -1  3  1  1 -1  1  1  0  0 -1  0 -1  0  0  2 -1  1 -1  1  0 -1  2  13  1  1 -1  1  0  0 -1  0  0  3  2  0  0  5 -1  3  2 -1  5  4  4  4 -15  5 -1  4  0  4  4  4  5  4  4  5  5  0  5  4 -1  4  5  5  5  1  5  50  5  4  4 -1  4  4  5  4  0  5  4 -1  0  5  5  5 -1  4  5  5  5  5  44]                                    #每个数据被划分的簇的分类
Noise raito: 22.15%                     #噪声数据的比例
Estimated number of clusters: 6         #簇的个数
Silhouette Coefficient: 0.710           #聚类效果评价指标
Cluster  0 :
[22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22]
Cluster  1 :
[23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23]
Cluster  2 :
[20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20]
Cluster  3 :
[21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21]
Cluster  4 :
[8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8]
Cluster  5 :
[7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7]

 

#上网时长聚类,前面部分不变real_X=np.array(onlinetimes).reshape((-1,2))X=np.log(1+real_X[:,1:])
db=skc.DBSCAN(eps=0.14,min_samples=10).fit(X)
labels = db.labels_#调用DBSCAN方法进行训练,labels为每个数据的簇标签
print('Labels:')
print(labels)
raito=len(labels[labels[:] == -1]) / len(labels)
print('Noise raito:',format(raito, '.2%'))#打印数据被记上的标签,计算标签为-1,即噪声数据的比例
n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0)print('Estimated number of clusters: %d' % n_clusters_)
print("Silhouette Coefficient: %0.3f"% metrics.silhouette_score(X, labels))for i in range(n_clusters_):print('Cluster ',i,':')count=len(X[labels == i])mean=np.mean(real_X[labels == i][:,1])std=np.std(real_X[labels == i][:,1])print('\t number of sample: ',count)print('\t mean of sample  : ',format(mean,'.1f'))print('\t std of sample   : ',format(std,'.1f'))#统计每一个簇内的样本个数,均值,标准差

2.降维(clustering)

保证数据的代表性特性情况下,将高维数据转化为低维数据的过程,可视化、精简数据。

聚类 vs. 降维:都是无监督学习,存在关联,如某些高维数据的聚类可通过降维处理,学界研究也表明代表性聚类算法如K-means与降维算法NMF之间存在等价性。

sklearn vs. 降维:sklearn提供降维算法函数在sklearn.decomposition模块中,有7种,降维过程可理解为对数据集组成成分的分解。

算法 参数 可扩展性 适用任务
PCS 所降维度及其他超参 大规模数据 信号处理
FastlCA 所降维度及其他超参 超大规模数据 图形图像特征提取
NMF 所降维度及其他超参 大规模数据 图形图像特征提取
LDA 所降维度及其他超参 大规模数据 文本数据,主题挖掘

主成分分析(Principal Component Analysis,PCA)是常用的一种降维方法。具有相关性的高维变量合成为线性无关的低维变量,能尽可能保留原始数据信息。

方差:各样本和样本均值差的平方和的均值,用于度量一组数据的分散程度。

协方差:用于度量两个变量之间的线性相关程度,若两个变量的协方差为0,则二者线性无关。协方差矩阵是由变量的协方差值构成的矩阵(对称阵)。

特征向量:描述数据集结构的非零向量,并满足,A是方阵,

python机器学习应用笔记相关推荐

  1. 掌握Python 机器学习 读书笔记 9 (流水线 算法保存)

    为什么80%的码农都做不了架构师?>>>    cha14 流水线 在机器学习里可以看到有一些必要的步骤, 这些步骤是可以作为workflow 自动化的. 而且流水线可以对每个fol ...

  2. 掌握python机器学习-读书笔记8 (抽样回归算法)

    为什么80%的码农都做不了架构师?>>>    12 抽查回归算法 今天来学习如何使用python scikit learn 来进行一些回归算法的使用. 篇幅限制, 不会对具体算法做 ...

  3. Python机器学习入门笔记(1)—— Scikit-learn与特征工程

    目录 机器学习算法分类 数据集工具 Scikit-learn Scikit-learn的安装 scikit-learn数据集API介绍 bunch对象 datasets模块 数据集的划分 train_ ...

  4. python嵩天课堂笔记_[Python机器学习]强化学习笔记(嵩天礼欣老师mooc第三周)

    [Python机器学习]强化学习笔记(嵩天礼欣老师mooc第三周) [Python机器学习]强化学习笔记(嵩天礼欣老师mooc第三周) 目录 强化学习 定义 马尔科夫决策过程 基本元素 值函数 最优值 ...

  5. Python机器学习笔记:sklearn库的学习

    自2007年发布以来,scikit-learn已经成为Python重要的机器学习库了,scikit-learn简称sklearn,支持包括分类,回归,降维和聚类四大机器学习算法.还包括了特征提取,数据 ...

  6. 机器学习实战笔记(Python实现)-04-Logistic回归

    转自:机器学习实战笔记(Python实现)-04-Logistic回归 转自:简单多元线性回归(梯度下降算法与矩阵法) 转自:人工神经网络(从原理到代码) Step 01 感知器 梯度下降

  7. python决策树 value_机器学习 | 算法笔记(四)- 决策树算法以及代码实现

    概述 上一篇讲述了<机器学习 | 算法笔记(三)- 支持向量机算法以及代码实现>,本篇讲述机器学习算法决策树,内容包括模型介绍及代码实现. 决策树 决策树(Decision Tree)在机 ...

  8. Python机器学习笔记:异常点检测算法——Isolation Forest

    Python机器学习笔记:异常点检测算法--Isolation Forest 参考文章: (1)Python机器学习笔记:异常点检测算法--Isolation Forest (2)https://ww ...

  9. 《python机器学习及实战》学习笔记ch1之良/恶性乳腺癌肿瘤预测

    1.文章说明 本系列文章都是自己学习<python机器学习及实战>这本书时所做的一些笔记而已,仅为学习作参考. 2.数据集地址: 数据地址是书中给出的数据下载地址: https://pan ...

最新文章

  1. corosync+pacemaker实现高可用(HA)集群(二)
  2. 多线程面试题_100多线程和Java并发面试问答–最终清单(PDF下载)
  3. java中jtextfield_java中的JTextField
  4. 将用bootstrap框架的html文件转为eclipse中jsp文件
  5. .Net开发中报表工具选择的体会心得
  6. matlab正弦光栅,科学网—光栅-正弦,矩形 - 宗兆玉的博文
  7. 为什么离开学校后,学习能力直线下降?
  8. 【MySQL】MySQL 8不支持查询缓存
  9. 11-JSP开发模型
  10. ios审核一般要多久_水电施工要注意哪些问题?水电施工一般需要多久
  11. vue-router linkActiveClass问题
  12. 前端开发常用网站整理
  13. 计算机组成原理笔记(王道考研) 第一章:计算机系统概述
  14. win10 安装sqlserver2000
  15. 简单的贪吃蛇代码,可上机运行
  16. 虚拟机您的计算机无法启动,一键解决win10虚拟机无法启动的问题
  17. Python中的协议有什么作用?
  18. w3c怎么检测html5,HTML5教程:html标签属性通过w3c验证
  19. 头脑王者服务器维护,头脑王者服务器
  20. python import turtle as t_Python Turtle模块的简单应用

热门文章

  1. IntelliJ IDEA神器快捷键
  2. 什么是“元城市”,为什么上海、首尔等一线大都市纷纷开始布局元城市?
  3. 小米众筹上架法乐洗烘套装:最快35分钟烘干
  4. governing equation
  5. 为泡面贴上健康美味新标签,康师傅用“存量创新”实现自我创新
  6. 洛谷刷题P5709苹果与兔子 P5707 上学迟到
  7. 怎么把visio 2010中的框中的字变成竖排以及如何将visio图插入word
  8. python将pdf转成excel_如何将pdf版的表格高效的转换成excel形式?
  9. 高等数学(一) 求极限 1/4直接代入型
  10. maya破解版安装python_Maya Python开发