目录

一、项目背景

二、数据来源

三、提出问题

四、理解数据

五、数据清洗

1.导入数据

2.选择子集

3.删除重复值

4.缺失值处理

5.标准化处理

6.异常值处理

六、分析内容

1.消费情况按月分析

2.用户分布分析

3.用户分层分析

4.用户生命周期分析

5.回购率与复购率分析

6.商品关联规则挖掘


一、项目背景

通过"扫描"零售商店电子销售点个别产品的条形码而获得的消费品销售的详细数据。这些数据提供了有关所售商品的数量、特征和价值以及价格的详细信息。

二、数据来源

https://www.kaggle.com/marian447/retail-store-sales-transactions

三、提出问题

  • 消费情况分析及用户购买模式分析
  • RFM和CLV分析
  • 不同类别商品关联规则挖掘

四、理解数据

  • Date:购买日期
  • Customer_ID:用户ID
  • Transaction_ID:交易ID
  • SKU_Category:商品分类SKU编码
  • SKU:商品唯一SKU编码
  • Quantity:购买数量
  • Sales_Amount:购买金额

五、数据清洗

1.导入数据

In [1]:

import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
import seaborn as sns
%matplotlib inline
# 更改设计风格
plt.style.use('ggplot')
plt.rcParams['font.sans-serif'] = ['SimHei']

In [2]:

df = pd.read_csv('E:/googledownload/archive (5)/scanner_data.csv')
df.head()

Out[2]:

  Unnamed: 0 Date Customer_ID Transaction_ID SKU_Category SKU Quantity Sales_Amount
0 1 2017-01-02 2547 1 X52 0EM7L 1.0 3.13
1 2 2017-01-02 822 2 2ML 68BRQ 1.0 5.46
2 3 2017-01-02 3686 3 0H2 CZUZX 1.0 6.35
3 4 2017-01-02 3719 4 0H2 549KK 1.0 5.59
4 5 2017-01-02 9200 5 0H2 K8EHH 1.0 6.88

In [3]:

df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 131706 entries, 0 to 131705
Data columns (total 8 columns):#   Column          Non-Null Count   Dtype
---  ------          --------------   -----  0   Unnamed: 0      131706 non-null  int64  1   Date            131706 non-null  object 2   Customer_ID     131706 non-null  int64  3   Transaction_ID  131706 non-null  int64  4   SKU_Category    131706 non-null  object 5   SKU             131706 non-null  object 6   Quantity        131706 non-null  float647   Sales_Amount    131706 non-null  float64
dtypes: float64(2), int64(3), object(3)
memory usage: 8.0+ MB

2.选择子集

第一列为数据编号,已有索引故删除

In [4]:

df.drop(columns='Unnamed: 0', inplace=True)
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 131706 entries, 0 to 131705
Data columns (total 7 columns):#   Column          Non-Null Count   Dtype
---  ------          --------------   -----  0   Date            131706 non-null  object 1   Customer_ID     131706 non-null  int64  2   Transaction_ID  131706 non-null  int64  3   SKU_Category    131706 non-null  object 4   SKU             131706 non-null  object 5   Quantity        131706 non-null  float646   Sales_Amount    131706 non-null  float64
dtypes: float64(2), int64(2), object(3)
memory usage: 7.0+ MB

3.删除重复值

In [5]:

df.duplicated().sum()

Out[5]:

0

数据无重复值

4.缺失值处理

In [6]:

df.isnull().sum()

Out[6]:

Date              0
Customer_ID       0
Transaction_ID    0
SKU_Category      0
SKU               0
Quantity          0
Sales_Amount      0
dtype: int64

数据无缺失值

5.标准化处理

In [7]:

df.dtypes

Out[7]:

Date               object
Customer_ID         int64
Transaction_ID      int64
SKU_Category       object
SKU                object
Quantity          float64
Sales_Amount      float64
dtype: object

Date为对象类型,需要标准化为日期类型格式

In [8]:

df.Date = pd.to_datetime(df.Date, format='%Y-%m-%d')
df.dtypes

Out[8]:

Date              datetime64[ns]
Customer_ID                int64
Transaction_ID             int64
SKU_Category              object
SKU                       object
Quantity                 float64
Sales_Amount             float64
dtype: object

6.异常值处理

In [9]:

df[['Quantity','Sales_Amount']].describe()

Out[9]:

  Quantity Sales_Amount
count 131706.000000 131706.000000
mean 1.485311 11.981524
std 3.872667 19.359699
min 0.010000 0.020000
25% 1.000000 4.230000
50% 1.000000 6.920000
75% 1.000000 12.330000
max 400.000000 707.730000

购买数量存在小于1是由于称重单位不足1所致,非异常值

六、分析内容

1.消费情况按月分析

(1)每月消费总金额趋势分析

In [10]:

df['Month'] = df.Date.astype('datetime64[M]')
df.head()

Out[10]:

  Date Customer_ID Transaction_ID SKU_Category SKU Quantity Sales_Amount Month
0 2017-01-02 2547 1 X52 0EM7L 1.0 3.13 2017-01-01
1 2017-01-02 822 2 2ML 68BRQ 1.0 5.46 2017-01-01
2 2017-01-02 3686 3 0H2 CZUZX 1.0 6.35 2017-01-01
3 2017-01-02 3719 4 0H2 549KK 1.0 5.59 2017-01-01
4 2017-01-02 9200 5 0H2 K8EHH 1.0 6.88 2017-01-01

In [11]:

grouped_month = df.groupby('Month')

In [12]:

grouped_month.Sales_Amount.sum()

Out[12]:

Month
2017-01-01    111200.28
2017-02-01    118323.24
2017-03-01    126770.11
2017-04-01    140114.18
2017-05-01    141536.95
2017-06-01    130384.85
2017-07-01    124357.15
2017-08-01    114295.16
2017-09-01    139665.01
2017-10-01    141692.79
2017-11-01    131676.89
2017-12-01    156308.81
2018-01-01      1713.20
Name: Sales_Amount, dtype: float64

2018年1月数据可能统计不全,不纳入趋势分析

In [13]:

grouped_month.Sales_Amount.sum().head(12).plot()

Out[13]:

<matplotlib.axes._subplots.AxesSubplot at 0x1e990450a20>

  • 由上图可知:消费金额波动较大,其中第一季度保持持续上升,后续波动较大,整体呈上升趋势

(2)每月交易次数趋势分析

In [14]:

grouped_month.Transaction_ID.nunique().head(12).plot()

Out[14]:

<matplotlib.axes._subplots.AxesSubplot at 0x1e9905160f0>

  • 由上图可知:交易次数波动较大,前期呈上升趋势,五月之后交易次数开始下降,在八月降至最低值,后续开始波动回升,在十二月份重回峰值

(3)每月商品购买数量趋势分析

In [15]:

grouped_month.Quantity.sum().head(12).plot()

Out[15]:

<matplotlib.axes._subplots.AxesSubplot at 0x1e990c9f9e8>

  • 由上图可知:商品购买数量波动较大,整体趋势同交易次数保持一致

(4)每月消费人数趋势分析

In [16]:

grouped_month.Customer_ID.nunique().head(12).plot()

Out[16]:

<matplotlib.axes._subplots.AxesSubplot at 0x1e990d10048>

  • 由上图可知:每月购买人数可分简单为三个阶段,1-5月呈持续上升趋势,6—8呈持续下降趋势,9-12月呈波动上升趋势

2.用户分布分析

(1)新用户分布

In [17]:

grouped_customer = df.groupby('Customer_ID')
grouped_customer.Date.min().value_counts().plot()

Out[17]:

<matplotlib.axes._subplots.AxesSubplot at 0x1e990fc3eb8>

  • 由上图可知:新用户获取不稳定,波动较大,整体有略微下降趋势

In [18]:

grouped_customer.Month.min().value_counts().plot()

Out[18]:

<matplotlib.axes._subplots.AxesSubplot at 0x1e991149ef0>

  • 由上图可知:按月统计,每月新用户用户数有明显下降趋势。说明新用户获取呈大幅下降趋势,需要引起注意,适当增加营销活动提升新用户的获取

(2)一次消费及多次消费用户占比分析

In [19]:

#仅消费一次用户占比
(grouped_customer.Transaction_ID.nunique() == 1).sum()/df.Customer_ID.nunique()

Out[19]:

0.5098342541436464
  • 由计算得:存在一半的用户只进行了一次消费

In [20]:

grouped_month_customer = df.groupby(['Month', 'Customer_ID'])

In [21]:

#每个用户每月的第一次购买时间
data_month_min_date = grouped_month_customer.Date.min().reset_index()
#每个用户的第一次购买时间
data_min_date = grouped_customer.Date.min().reset_index()

In [22]:

#通过Customer_ID联立两表
merged_date = pd.merge(data_month_min_date, data_min_date, on='Customer_ID')
merged_date.head()

Out[22]:

  Month Customer_ID Date_x Date_y
0 2017-01-01 1 2017-01-22 2017-01-22
1 2017-01-01 3 2017-01-02 2017-01-02
2 2017-01-01 11 2017-01-29 2017-01-29
3 2017-01-01 12 2017-01-07 2017-01-07
4 2017-01-01 13 2017-01-11 2017-01-11

In [23]:

#Date_x等于Date_y则为每月新用户
((merged_date.query('Date_x == Date_y')).groupby('Month').Customer_ID.count() / merged_date.groupby('Month').Customer_ID.count()).plot()

Out[23]:

<matplotlib.axes._subplots.AxesSubplot at 0x1e991202cf8>

  • 由上图可知:每月新用户占比整体呈下降趋势,结合每月消费人数趋势可知,第四季度消费人数有上升趋势,故期间复购人数有所提升

3.用户分层分析

(1)RFM分层分析

In [24]:

pivot_rfm = df.pivot_table(index='Customer_ID',values=['Date', 'Transaction_ID', 'Sales_Amount'],aggfunc={'Date':'max', 'Transaction_ID':'nunique', 'Sales_Amount':'sum'})

In [25]:

pivot_rfm['R'] = (pivot_rfm.Date.max() - pivot_rfm.Date)/np.timedelta64(1, 'D')
pivot_rfm.rename(columns={'Transaction_ID':'F', 'Sales_Amount':'M'}, inplace=True)

In [26]:

def label_func(data):label = data.apply(lambda x:'1' if x > 0 else '0')label = label.R + label.F + label.Mlabels = {'111':'重要价值客户','011':'重要保持客户','101':'重要发展客户','001':'重要挽留客户','110':'一般价值客户','010':'一般保持客户','100':'一般发展客户','000':'一般挽留客户'}return labels[label]
pivot_rfm['label'] = pivot_rfm[['R','F','M']].apply(lambda x:x-x.mean()).apply(label_func, axis=1)

In [27]:

pivot_rfm.label.value_counts().plot.barh()

Out[27]:

<matplotlib.axes._subplots.AxesSubplot at 0x1e9914a5f98>

In [28]:

pivot_rfm.groupby('label').M.sum().plot.pie(figsize=(6,6), autopct='%3.2f%%')

Out[28]:

<matplotlib.axes._subplots.AxesSubplot at 0x1e991b29d30>

In [29]:

pivot_rfm.groupby('label').agg(['sum', 'count'])

Out[29]:

  M F R
  sum count sum count sum count
label            
一般价值客户 38702.46 991 3653 991 258396.0 991
一般保持客户 75475.62 1802 7161 1802 97961.0 1802
一般发展客户 144065.48 8329 10089 8329 2256955.0 8329
一般挽留客户 119097.65 6313 8158 6313 443616.0 6313
重要价值客户 192090.11 1028 5475 1028 270431.0 1028
重要保持客户 860862.51 3069 28458 3069 120487.0 3069
重要发展客户 81377.67 600 892 600 162986.0 600
重要挽留客户 66367.12 493 796 493 33989.0 493

由上表及图可知:

  • 销售额主要来源重要保持客户,人数占比最高的为一般发展客户
  • 重要保持客户:销售额的主要来源,近期有消费,且消费高,消费频率不足,可以适当举行营销活动,提升此层客户的购买频率
  • 重要价值客户:销售额的第二来源,近期有消费,消费高,频率高,尽可能使该层客户保持现状
  • 重要发展客户:消费以及消费频次高,近期没有消费,可以使用适当策略召回用户,参与消费
  • 重要挽留客户:消费高,但频次低且近期未消费,处在流失的边缘,可以通过适当活动,使其参与到消费中来,防止流失
  • 一般价值客户:消费低,消费频率高且近期有消费,可以使用优惠券等形式活动刺激该层客户的消费,提升其消费额
  • 一般发展客户:人数占比最高,近期有消费,但消费额以及消费频次不高,考虑到人数占比高,可以适当举办活动提升消费频次和消费额
  • 一般保持客户:在成本与资源控制下,酌情考虑
  • 一般挽留客户:在成本与资源控制下,酌情考虑

(2)用户状态分层分析

In [30]:

pivoted_status = df.pivot_table(index='Customer_ID', columns='Month', values='Date', aggfunc='count').fillna(0)

In [31]:

def active_status(data):status = []for i in range(len(data)):     #若本月没有消费if data[i] == 0:if len(status) > 0:if status[i-1] == 'unreg':status.append('unreg')else:status.append('unactive')else:status.append('unreg')#若本月有消费else:if len(status) > 0:if status[i-1] == 'unreg':status.append('new')elif status[i-1] == 'unactive':status.append('return')else:status.append('active')else:status.append('new')status = pd.Series(status, index = data.index)return status

In [32]:

active_status = pivoted_status.apply(active_status, axis=1)

In [33]:

active_status.replace('unreg', np.nan).apply(lambda x:x.value_counts()).fillna(0).T.apply(lambda x: x/x.sum(),axis=1).plot.area()

Out[33]:

<matplotlib.axes._subplots.AxesSubplot at 0x1e991f66d30>

由上图可知:

  • 新用户:新用户占比呈明显下降趋势,说明拉新运营不足
  • 活跃用户:在二月占比达到最高,后续呈缓慢下降趋势,说明消费运营正在下滑
  • 不活跃用户:不活跃用户呈明显上升趋势,客户流失较为明显
  • 回流客户:有缓慢上升趋势,说明召回运营不错

4.用户生命周期分析

(1)用户生命周期分布

In [34]:

#构成用户生命周期研究的数据样本需要消费次数>=2次的用户
clv = (grouped_customer[['Sales_Amount']].sum())[grouped_customer.Transaction_ID.nunique() > 1]

In [35]:

clv['lifetime'] = (grouped_customer.Date.max() - grouped_customer.Date.min())/np.timedelta64(1,'D')

In [36]:

clv.describe()

Out[36]:

  Sales_Amount lifetime
count 11090.000000 11090.000000
mean 121.473811 116.468260
std 202.733651 85.985488
min 2.240000 0.000000
25% 27.462500 42.000000
50% 55.635000 96.000000
75% 126.507500 190.000000
max 3985.940000 364.000000
  • 由上表可知:消费一次以上的用户平均生命周期为116天,用户生命周期内平均消费金额为121.47元

In [37]:

clv['lifetime'].plot.hist(bins = 50)

Out[37]:

<matplotlib.axes._subplots.AxesSubplot at 0x1e991ab1400>

由上图可知:

  • 生命周期在0-90天内的用户较多,说明生命周期短的客户占比较高,90天内流失率较高,此部分用户可以作为运营重点,延长这些用户的生命周期;
  • 生命周期在90-250之间的分布较为均匀,这也是大多数用户的生命周期,可以刺激这些用户的消费,使其在生命周期内提升消费金额;
  • 生命周期大于250天的人数极少,说明生命周期较长的忠诚客户占比不高。

(2)用户生命周期价值分布

In [38]:

clv['Sales_Amount'].plot.hist(bins = 50)

Out[38]:

<matplotlib.axes._subplots.AxesSubplot at 0x1e99178d208>

由上图可知:

  • 绝大部分用户生命周期内价值在500以内,且其中大部分在100以内,存在较大极值拉高均值,数据向右偏斜。

(3)用户生命周期及其价值相关关系

In [39]:

plt.scatter(x='lifetime', y='Sales_Amount', data=clv)

Out[39]:

<matplotlib.collections.PathCollection at 0x1e991810518>

由上图可知:

  • 用户生命周期与其期间客户价值不存在线性关系,当生命周期在300天内,部分生命周期较长用户贡献的价值高于生命周期较短的用户;
  • 当生命周期大于300天,存在部分用户贡献价值较少,由于数据量不足等原因,结果仅供参考

5.回购率与复购率分析

(1)复购率分析

In [40]:

#每月消费次数大于1的用户数
customer_month_again = grouped_month_customer.nunique().query('Transaction_ID > 1').reset_index().groupby('Month').count().Customer_ID
#每月消费用户数
customer_month = grouped_month.Customer_ID.nunique()
#每月复购率
(customer_month_again/customer_month).plot()

Out[40]:

<matplotlib.axes._subplots.AxesSubplot at 0x1e991788390>

  • 由上图可知:复购率在25%上下浮动,说明每月有25%的用户会进行多次消费;前三个月的复购率有所下降,后续有所回升,整体有上升趋势,应结合本身商务模式,决定进一步提升复购率还是注重新用户的获取。最后一月由于数据量不足,结果以真实数据为主。

(2)回购率分析

In [41]:

#  1表示前90天消费且本月回购  0表示前90天消费本月未回购  nan表示前90天未消费
def buy_back(data):status = [np.nan,np.nan,np.nan]for i in range(3,len(data)):#本月购买if data[i] == 1:#前90天购买if (data[i-1] == 1 or data[i-2] ==1 or data[i-3] == 1):status.append(1)#前90天未购买else:status.append(np.nan)#本月未购买else:#前90天购买if (data[i-1] == 1 or data[i-2] ==1 or data[i-3] == 1):status.append(0)#前90天未购买else:status.append(np.nan)status = pd.Series(status, index = data.index)return status

In [42]:

back_status = pivoted_status.apply(buy_back, axis=1)
back_status.head()

Out[42]:

Month 2017-01-01 2017-02-01 2017-03-01 2017-04-01 2017-05-01 2017-06-01 2017-07-01 2017-08-01 2017-09-01 2017-10-01 2017-11-01 2017-12-01 2018-01-01
Customer_ID                          
1 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
2 NaN NaN NaN 0.0 0.0 1.0 0.0 0.0 0.0 NaN NaN NaN NaN
3 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
4 NaN NaN NaN NaN NaN NaN NaN 0.0 0.0 0.0 NaN NaN NaN
5 NaN NaN NaN 0.0 1.0 0.0 1.0 0.0 0.0 0.0 NaN NaN NaN

In [43]:

(back_status.sum()/back_status.count()).plot()

Out[43]:

<matplotlib.axes._subplots.AxesSubplot at 0x1e9952a1390>

  • 由上图可知:90天内回购率,即90天内重复购买率在10%以下,说明目前商店处于用户获取模式,然而由前面分析可知,新用户获取呈下降趋势,目前商店并不健康,当前阶段应当将重心放在新用户获取上,

6.商品关联规则挖掘

(1)分析热销商品

In [44]:

#取出销量排名前10的商品类型
hot_category = df.groupby('SKU_Category').count().Sales_Amount.sort_values(ascending=False)[:10].reset_index()
plt.barh(hot_category.SKU_Category, hot_category.Sales_Amount)

Out[44]:

<BarContainer object of 10 artists>

In [45]:

#热销商品占比
hot_category['percent'] = hot_category.Sales_Amount.apply(lambda x:x/hot_category.Sales_Amount.sum())
plt.figure(figsize=(6,6))
plt.pie(hot_category.percent,labels=hot_category.SKU_Category,autopct='%1.2f%%')
plt.show()

In [46]:

category_list = df.groupby('Transaction_ID').SKU_Category.apply(list).values.tolist()

In [47]:

from apyori import apriori

In [48]:

min_support_value = 0.02
min_confidence_value = 0.3
result = list(apriori(transactions=category_list, min_support=min_support_value, min_confidence=min_confidence_value, min_left=0))

In [49]:

result

Out[49]:

[RelationRecord(items=frozenset({'FU5', 'LPF'}), support=0.02067035651340404, ordered_statistics=[OrderedStatistic(items_base=frozenset({'FU5'}), items_add=frozenset({'LPF'}), confidence=0.4946355900850906, lift=6.8819142262602355)]),RelationRecord(items=frozenset({'LPF', 'IEV'}), support=0.031152407161188583, ordered_statistics=[OrderedStatistic(items_base=frozenset({'IEV'}), items_add=frozenset({'LPF'}), confidence=0.4889589905362776, lift=6.802935131397615), OrderedStatistic(items_base=frozenset({'LPF'}), items_add=frozenset({'IEV'}), confidence=0.43342654334265435, lift=6.802935131397614)]),RelationRecord(items=frozenset({'OXH', 'LPF'}), support=0.020067406697381034, ordered_statistics=[OrderedStatistic(items_base=frozenset({'OXH'}), items_add=frozenset({'LPF'}), confidence=0.4810971089696071, lift=6.693551990185444)])]

由上结果可得:

  • ‘FU5’-->‘LPF’:支持度为约2.1%,置信度约为49.5%。说明同时购买这两类商品发生的可能性为约2.1%,先购买FU5类型产品后,同时购买LPF类型产品的概率为49.5%
  • ‘IEV’-->‘LPF’:支持度约为3.1%,置信度约为48.9%。说明同时购买这两类商品发生的可能性约为3.1%,先购买IEV类型产品后,同时购买LPF类型产品的概率约为48.9%
    ‘LPF’-->‘IEV’:支持度约为3.1%,置信度约为43.3%。说明同时购买这两类商品发生的可能性约为3.1%,先购买LPF类型产品后,同时购买IEV类型产品的概率约为43.3%
  • ‘OXH’-->‘LPF’:支持度约为2.0%,置信度约为48.1%。说明同时购买这两类商品发生的可能性约为2.0%,先购买IEV类型产品后,同时购买LPF类型产品的概率约为48.1%

零售商店订单数据分析相关推荐

  1. SSAS知识回放之订单数据分析

    SSAS知识回放之订单数据分析 1:目标 基于已经做好的DW,利用SSAS实现一个多维数据模型的创建,通过浏览可以简单的实现订单数据的分析 2:步骤 2.1:添加数据源 如下图所示,创建一个数据仓库层 ...

  2. 实战项目:餐厅订单数据分析:订单维度和时间维度

    餐厅订单数据分析:订单维度和时间维度 1. 针对不同维度进行数据分析: 针对订单order_id: 什么菜最受欢迎 点菜的种类 点菜的数量 消费金额最大 平均消费 针对时间日期进行分析: 点菜量比较集 ...

  3. 基于Python进行餐饮订单数据分析

    Python数据分析----餐饮订单数据分析 题目要求 (以图片展示) 前言 俗话说的民意食为天,随着科技的发展和人们生活水平的提高.餐饮行业作为我国第三产业中的一个传统服务性行业,始终保持着旺盛的增 ...

  4. 冰箱日订单数据分析报告(京东)

    数据来源 2020年5月25日京东大家电-家用电器-冰箱订单数据,按10%抽样,约22MB(70k+条数据) 订单数据分析的基本思路 宏观分析 宏观把握订单的总体特征 订单总量:61535 GMV:6 ...

  5. python项目--餐厅订单数据分析

    导入包,加载数据 数据是网上获取的,数据见链接: 餐厅订单数据分析的数据. 通过分析之后我们要用到以下三个包,分别是numpy.pandas.matplotlib.加载数据我们采用pandas中的re ...

  6. 数据分析:餐厅订单数据分析

    数据分析:餐厅订单数据分析 作者:i阿极 作者简介:Python领域新星作者.多项比赛获奖者:博主个人首页

  7. python 京东_Python数据分析-京东订单数据分析实战

    本次数据来源于京东,类目为大家电-家用电器-冰箱,抽取2020年5月25日10%数据,数据量为 70k+,在 jupyer notebook 内进行分析. 数据文件: 链接:迅雷云盘:提取码:ezQq ...

  8. Python数据分析实战 —— 天猫订单数据分析

    文章目录 项目介绍 数据介绍 导入部分库 数据预处理 数据格式整理 异常值分析 数据分析 描述性统计 周趋势.日趋势分析 产品价格分析 地区分析 转化率分析 总结 项目介绍 本项目将对2020年2月份 ...

  9. python盘点订单_在线超市-Ulabox订单数据分析(python)

    摘要 本次实践案例利用数据kaggle数据进行分析.链接如下 该数据集为西班牙在线杂货店Ulabox订单数据,数据集包括匿名的子集30K订单从2017年开始的所有类型的客户.整个分析分为五个步骤:&q ...

最新文章

  1. 爬虫之lxml模块中etree.tostring函数的使用
  2. VC++中的通知消息
  3. java中日期怎么比较_如何比较Java中的日期?
  4. sql 转html 中文乱码问题,SqlServer中文乱码问题的解决方法
  5. 分布式架构下常见序列化技术-了解序列化的发展
  6. java8 streams_Java 8 Streams:过滤和谓词否定
  7. UCLA博士带入门:室内场景下智能机器人的环境感知及定位
  8. 从零开始刷Leetcode——数组(896.905.914.922)
  9. 已知坐标求方位角_震惊,up主居然能默写球坐标拉普拉斯算子!
  10. 解决错误---undefined reference to `pthread_create‘
  11. python用matplotlib画雷达图_Matplotlib绘制雷达图和三维图的示例代码
  12. 13家电脑品牌来源大揭底
  13. navicat12简体中文专业版免费使用教程
  14. Ant Design 框架
  15. 全球语种谱系图,看看机器翻译需要跨越的大山
  16. 前端 Coder 手中的 Docker
  17. 西安交大计算机专业考研复试,2018西安交通大学计算机考研复试分数线_计算机考研分数线...
  18. java 一天的结束时间_java怎么获取一天的开始时间和结束时间
  19. 基于nodejs+vue社区互助平台- vscode项目
  20. 【CV系列】扫描线算法区域填充

热门文章

  1. Android 调用第三方 APP
  2. CS0533隐藏继承的抽条成员/CS0534不实现继承的抽象成员
  3. 一个人的武林:渗透测试常规思路分析(一)
  4. 清华大学五道口金融学院2023年博士生招生简章(普博+直博)
  5. mysql 索引代码_mysql索引
  6. 计算机下桌面显示不出来,电脑桌面文档不会在右边显示出来怎么办
  7. 计算机专业测试题选择题,计算机专业测试试习题及答案.docx
  8. 一、Windows系统下安装Tensorflow2.x(2.6)
  9. 看完这些治愈的VR全景风景,相信你一定会心驰神往
  10. 瑞晟蓝牙来电语音软件下载_语音来电秀app下载-语音来电秀 安卓版v12.6-PC6安卓网...