我们都知道 Linux 是一个多任务操作系统,它支持的任务同时运行的数量远远大于 CPU 的数量。当然,这些任务实际上并不是同时运行的(Single CPU),而是因为系统在短时间内将 CPU 轮流分配给任务,造成了多个任务同时运行的假象。

CPU 上下文(CPU Context)

在每个任务运行之前,CPU 需要知道在哪里加载和启动任务。这意味着系统需要提前帮助设置 CPU 寄存器程序计数器

CPU 寄存器是内置于 CPU 中的小型但速度极快的内存。程序计数器用于存储 CPU 正在执行的或下一条要执行指令的位置。

它们都是 CPU 在运行任何任务之前必须依赖的依赖环境,因此也被称为 “CPU 上下文”。如下图所示:

知道了 CPU 上下文是什么,我想你理解 CPU 上下文切换就很容易了。“CPU上下文切换”指的是先保存上一个任务的 CPU 上下文(CPU寄存器和程序计数器),然后将新任务的上下文加载到这些寄存器和程序计数器中,最后跳转到程序计数器。

这些保存的上下文存储在系统内核中,并在重新安排任务执行时再次加载。这确保了任务的原始状态不受影响,并且任务似乎在持续运行。

CPU 上下文切换的类型

你可能会说 CPU 上下文切换无非就是更新 CPU 寄存器和程序计数器值,而这些寄存器是为了快速运行任务而设计的,那为什么会影响 CPU 性能呢?

在回答这个问题之前,请问,你有没有想过这些“任务”是什么?你可能会说一个任务就是一个进程或者一个线程。是的,进程和线程正是最常见的任务,但除此之外,还有其他类型的任务。

别忘了硬件中断也是一个常见的任务,硬件触发信号,会引起中断处理程序的调用。

因此,CPU 上下文切换至少有三种不同的类型:

  • 进程上下文切换
  • 线程上下文切换
  • 中断上下文切换

让我们一一来看看。

进程上下文切换

Linux 按照特权级别将进程的运行空间划分为内核空间和用户空间,分别对应下图中 Ring 0Ring 3 的 CPU 特权级别的 。

  • 内核空间Ring 0)拥有最高权限,可以直接访问所有资源
  • 用户空间Ring 3)只能访问受限资源,不能直接访问内存等硬件设备。它必须通过系统调用被**陷入(trapped)**内核中才能访问这些特权资源。

从另一个角度看,一个进程既可以在用户空间也可以在内核空间运行。当一个进程在用户空间运行时,称为该进程的用户态,当它落入内核空间时,称为该进程的内核态

用户态内核态的转换需要通过系统调用来完成。例如,当我们查看一个文件的内容时,我们需要以下系统调用:

  • open():打开文件
  • read():读取文件的内容
  • write():将文件的内容写入到输出文件(包括标准输出)
  • close():关闭文件

那么在上述系统调用过程中是否会发生 CPU 上下文切换呢?当然是的。

这需要先保存 CPU 寄存器中原来的用户态指令的位置。接下来,为了执行内核态的代码,需要将 CPU 寄存器更新到内核态指令的新位置。最后是跳转到内核态运行内核任务。

那么系统调用结束后,CPU 寄存器需要恢复原来保存的用户状态,然后切换到用户空间继续运行进程。

因此,在一次系统调用的过程中,实际上有两次 CPU 上下文切换。

但需要指出的是,系统调用进程不会涉及进程切换,也不会涉及虚拟内存等系统资源切换。这与我们通常所说的“进程上下文切换”不同。进程上下文切换是指从一个进程切换到另一个进程,而系统调用期间始终运行同一个进程

系统调用过程通常被称为特权模式切换,而不是上下文切换。但实际上,在系统调用过程中,CPU 的上下文切换也是不可避免的。

进程上下文切换 vs 系统调用

那么进程上下文切换和系统调用有什么区别呢?首先,进程是由内核管理的,进程切换只能发生在内核态。因此,进程上下文不仅包括虚拟内存全局变量等用户空间资源,还包括内核栈寄存器等内核空间的状态。

所以进程上下文切换系统调用要多出一步:

在保存当前进程的内核状态和 CPU 寄存器之前,需要保存进程的虚拟内存、栈等;并加载下一个进程的内核状态。

根据 Tsuna 的测试报告,每次上下文切换需要几十纳秒至微秒的 CPU 时间。这个时间是相当可观的,尤其是在大量进程上下文切换的情况下,很容易导致 CPU 花费大量时间来保存和恢复寄存器、内核栈、虚拟内存等资源。这正是我们在上一篇文章中谈到的,一个导致平均负载上升的重要因素。

那么,该进程何时会被调度/切换到在 CPU 上运行?其实有很多场景,下面我为大家总结一下:

  • 当一个进程的 CPU 时间片用完时,它会被系统挂起,并切换到其他等待 CPU 运行的进程。
  • 当系统资源不足(如内存不足)时,直到资源充足之前,进程无法运行。此时进程也会被挂起,系统会调度其他进程运行。
  • 当一个进程通过 sleep 函数自动挂起自己时,自然会被重新调度。
  • 当优先级较高的进程运行时,为了保证高优先级进程的运行,当前进程会被高优先级进程挂起运行
  • 当发生硬件中断时,CPU 上的进程会被中断挂起,转而执行内核中的中断服务程序。

了解这些场景是非常有必要的,因为一旦上下文切换出现性能问题,它们就是幕后杀手。

线程上下文切换

线程和进程最大的区别在于,线程是任务调度的基本单位,而进程是资源获取的基本单位。

说白了,内核中所谓的任务调度,实际的调度对象是线程;而进程只为线程提供虚拟内存和全局变量等资源。所以,对于线程和进程,我们可以这样理解:

  • 当一个进程只有一个线程时,可以认为一个进程等于一个线程
  • 当一个进程有多个线程时,这些线程共享相同的资源,例如虚拟内存和全局变量。
  • 此外,线程也有自己的私有数据,比如栈和寄存器,在上下文切换时也需要保存。

这样,线程的上下文切换其实可以分为两种情况:

  • 首先,前后两个线程属于不同的进程。此时,由于资源不共享,切换过程与进程上下文切换相同。
  • 其次,前后两个线程属于同一个进程。此时,由于虚拟内存是共享的,所以切换时虚拟内存的资源保持不变,只需要切换线程的私有数据、寄存器等未共享的数据。

显然,同一个进程内的线程切换比切换多个进程消耗的资源要少。这也是多线程替代多进程的优势。

中断上下文切换

除了前面两种上下文切换之外,还有另外一种场景也输出 CPU 上下文切换的,那就是中断

为了快速响应事件,硬件中断会中断正常的调度和执行过程,进而调用中断处理程序

在中断其他进程时,需要保存进程的当前状态,以便中断后进程仍能从原始状态恢复。

与进程上下文不同,中断上下文切换不涉及进程的用户态。因此,即使中断进程中断了处于用户态的进程,也不需要保存和恢复进程的虚拟内存、全局变量等用户态资源。

另外,和进程上下文切换一样,中断上下文切换也会消耗 CPU。过多的切换次数会消耗大量的 CPU 资源,甚至严重降低系统的整体性能。因此,当您发现中断过多时,需要注意排查它是否会对您的系统造成严重的性能问题。

问题排查

工具

vmstat ——是一个常用的系统性能分析工具,主要用来分析系统的内存使用情况,也常用来分析CPU上下文切换和中断的次数

pidstat ——vmstat只给出了系统总体的上下文切换情况,要想查看每个进程的详细情况,就需要使用pidstat,加上-w,可以查看每个进程上下文切换的情况

/proc/interrupts——/proc实际上是linux的虚拟文件系统用于内核空间和用户空间的通信,/proc/interrupts是这种通信机制的一部分,提供了一个只读的中断使用情况。

perf stat 可以统计很多和CPU相关核心数据,比如cache’ miss,上下文切换,CPI等。

实战

vmstat

# 每隔1秒输出1组数据(需要Ctrl+C才结束)
$ vmstat 1
procs -----------memory---------- ---swap-- -----io---- -system-- ------cpu-----r  b   swpd   free   buff  cache   si   so    bi    bo   in   cs us sy id wa st6  0      0 6487428 118240 1292772    0    0     0     0 9019 1398830 16 84  0  0  08  0      0 6487428 118240 1292772    0    0     0     0 10191 1392312 16 84  0  0  0
cs(context switch)是每秒上下文切换的次数
in   (interrupt)每秒中断的次数
r    (Running or Runnnable)是就绪队列的长度,也就是正在运行和等待CPU的进程数。
b  (Blocked) 则是处于不可中断睡眠状态的进程数
  • 分析:
    查看cs大小(实验时cs骤升到百万)
    同时注意r列(实验时为8),机器cpu为1,远远超过1,必然会有大量的CPU竞争
    us和sy列,计算cpu使用率总和(实验加起来快100%,其中sy高达84%,说明cpu主要被内核占用)
    in列,查看大小(实验中骤升到一万,说明中断处理也是潜在的问题)
    综合可知,系统的就需队列过长,也就是正在运行和等待CPU的进程数过多,导致了大量的上下文切换,而上下文切换导致了cpu占用率高

pidstat查看进程上下文切换情况

# 每隔1秒输出1组数据(需要 Ctrl+C 才结束)
# -w参数表示输出进程切换指标,而-u参数则表示输出CPU使用指标
$ pidstat -w -u 1
08:06:33      UID       PID    %usr %system  %guest   %wait    %CPU   CPU  Command
08:06:34        0     10488   30.00  100.00    0.00    0.00  100.00     0  sysbench
08:06:34        0     26326    0.00    1.00    0.00    0.00    1.00     0  kworker/u4:208:06:33      UID       PID   cswch/s nvcswch/s  Command
08:06:34        0         8     11.00      0.00  rcu_sched
08:06:34        0        16      1.00      0.00  ksoftirqd/1
08:06:34        0       471      1.00      0.00  hv_balloon
08:06:34        0      1230      1.00      0.00  iscsid
08:06:34        0      4089      1.00      0.00  kworker/1:5
08:06:34        0      4333      1.00      0.00  kworker/0:3
08:06:34        0     10499      1.00    224.00  pidstat
08:06:34        0     26326    236.00      0.00  kworker/u4:2
08:06:34     1000     26784    223.00      0.00  sshd
  • cswch 表示每秒自愿上下文切换的次数,是指进程无法获取所需资源,导致的上下文切换,比如说,I/O,内存等系统资源不足时,就会发生自愿上下文切换。
  • nvcswch 表示每秒非自愿上下文切换的次数,则是指进程由于时间片已到等原因,被系统强制调度,进而发生的上下文切换。
  • 分析:
    pidstat查看果然是sysbench导致了cpu达到100%,但上下文切换来自其他进程,包括非自愿上下文切换最高的pidstat,以及自愿上下文切换最高的kworker和sshd
    但pidtstat输出的上下文切换次数加起来才几百和vmstat的百万明显小很多,现在vmstat输出的是线程,而pidstat加上-t后才输出线程指标
# 每隔1秒输出一组数据(需要 Ctrl+C 才结束)
# -wt 参数表示输出线程的上下文切换指标
$ pidstat -wt 1
08:14:05      UID      TGID       TID   cswch/s nvcswch/s  Command
...
08:14:05        0     10551         -      6.00      0.00  sysbench
08:14:05        0         -     10551      6.00      0.00  |__sysbench
08:14:05        0         -     10552  18911.00 103740.00  |__sysbench
08:14:05        0         -     10553  18915.00 100955.00  |__sysbench
08:14:05        0         -     10554  18827.00 103954.00  |__sysbench
...
pidstat子线程加一起就差不多百万了。

查看中断——可排查是哪些中断引起的(变化速度最快的)

# -d 参数表示高亮显示变化的区域
$ watch -d cat /proc/interruptsCPU0       CPU1
...
RES:    2450431    5279697   Rescheduling interrupts
...

观察一段时间后,可以发现变化最快的是重新调度中断(RES, REScheduling interrupt)。这种中断类型表明处于空闲状态的 CPU 被唤醒以调度新的任务运行。所以这里的中断增加是因为太多的任务调度问题,这和前面上下文切换次数的分析结果是一致的.

现在回到最初的问题,每秒多少次上下文切换是正常的?

这个值实际上取决于系统本身的 CPU 性能。如果系统的上下文切换次数比较稳定的话,几百到一万应该是正常的。但是,当上下文切换次数超过 10000,或者切换次数快速增加时,很可能是出现了性能问题。

perf stat 可以排查系统上下文切换速率变化

可以观察context-switcehes 数据的变化,有没有突增,可以发现一些异常想象。

场景
  • 根据调度策略,将CPU时间划片为对应的时间片,当时间片耗尽,当前进程必须挂起。
  • 资源不足的,在获取到足够资源之前进程挂起。
  • 进程sleep挂起进程。
  • 高优先级进程导致当前进度挂起
  • 硬件中断,导致当前进程挂起
小结
  • CPU上下文切换,是保证Linux系统正常工作的核心功能之一,一般情况下不需要我们特别关注。
  • 但过多的上下文切换,会把CPU时间消耗在寄存器,内核栈以及虚拟内存等数据的保存和恢复上,从而缩短进程真正运行的时间,导致系统的整体性能大幅下降。
  • 自愿上下文切换变多了,说明进程都在等待资源,有可能发生了 I/O 等其他问题
  • 非自愿上下文切换变多了,说明进程都在被强制调度,也就是都在争抢 CPU,说明 CPU 的确成了瓶颈
  • 中断次数变多了,说明 CPU 被中断处理程序占用,还需要通过查看 /proc/interrupts 文件来分析具体的中断类型。

参考

https://www.jianshu.com/p/1b7b78538531

https://medium.com/geekculture/linux-cpu-context-switch-deep-dive-764bfdae4f01

探讨Linux CPU的上下文切换原由相关推荐

  1. linux cpu上下文切换 简介

    目录 什么是CPU上下文 什么是CPU上下文切换 进程上下文切换 线程上下文切换 中断上下文切换 linux的上下文切换查看 上下文切换次数多少合理? 什么是CPU上下文 Linux是一个多任务操作系 ...

  2. 上下文保存 中断_Linux性能优化(CPU篇)(5)——CPU的上下文切换有几种类型?什么是进程上下文切换?...

    上一篇中讲了stress用来模拟常见压力测试的选项: RobotCode俱乐部:<Linux性能优化实战>之CPU性能篇(四)​zhuanlan.zhihu.com 这一篇的主题是:CPU ...

  3. ​Linux CPU 性能优化指南

    本文作者:allenxguo,腾讯 QQ 音乐后台开发工程师 本文主要帮助理解 CPU 相关的性能指标,常见的 CPU 性能问题以及解决方案梳理. 系统平均负载 简介 系统平均负载:是处于可运行或不可 ...

  4. 校招面试问到Linux CPU不用怕,来看看这份宝典

    校招面试问到Linux CPU不用怕,来看看这份宝典 原创小目网易游戏运维平台 小目 网易游戏资深运维工程师,负责<阴阳师>.<明日之后>等多款游戏运维工作. 又是一年校招季, ...

  5. Linux CPU负载性能监测

    Linux CPU性能监测 平均负载和 CPU 使用率 压测命令 stress 模拟负载场景 监测工具 top mpstat pidstat 补充:自愿上下文切换和非自愿上下文切换 平均负载和 CPU ...

  6. Linux CPU 性能指标分析

    简介 在服务端测试,以及生产环境中,通过需要观察CPU的使用情况,以此作为衡量系统性能的重要指标.对于Linux CPU主要的指标有,利用率,运行队列,负载,上下文切换等,对一个合格的程序员来说了解这 ...

  7. linux cpu load 值,理解Linux系统中的load average(图文版)转

    一.什么是load average? linux系统中的Load对当前CPU工作量的度量 (WikiPedia: the system load is a measure of the amount ...

  8. linux判断cpu是否过载,Linux CPU 如何判断忙

    原标题:Linux CPU 如何判断忙 摘录自:http://www.ruanyifeng.com/blog/2016/12/user_space_vs_kernel_space.html 学习 Li ...

  9. linux cpu大小,如何查看linux cpu大小

    有时候想要查看下linux cpu的大小!用什么方法好呢?下面由学习啦小编给你做出详细的查看linux cpu大小方法介绍!希望对你有帮助! 查看linux cpu大小方法一 一.linux CPU大 ...

最新文章

  1. 【Python】PAT-1024-科学计数法
  2. 【计算机视觉】期刊整理
  3. python 生成器装饰器_对Python生成器、装饰器、递归的使用详解
  4. 斗鱼回应与虎牙合并;Android 11 Beta 3 发布| 极客头条
  5. 圆检测——最小二乘法拟合圆的推导
  6. 收文和发文管理流程分析
  7. android5.0电话录音,用Xpose完美实现电话录音,支持android 8.1.0
  8. 多媒体的基础知识:感觉媒体、表现媒体、表示媒体、传输媒体、存储媒体
  9. 代码坏的味道21:被拒绝的遗赠 (Refused Bequest)
  10. 超实用的自我规划模型 | 进击
  11. fragment实例
  12. 伦敦 quant_伦敦统一用户组8
  13. 科学幻想其实是对科学研究的发展方向起到很好的引领作用
  14. 牛客小白月赛6 I.公交线路
  15. C++ 实现类的成员函数绑定回调
  16. matlab双端测距算法,一种使用亚当姆斯法的双端故障测距算法
  17. 【ArcGIS】渔网A和不规则栅格B算面积比
  18. linux 微信不能发图片大小,解决微信插件wxparse图片大小不能改变的问题
  19. 河南推出近万亿PPP投资计划 郑州实现智慧城市全覆盖
  20. 如何快速图片压缩指定大小?图片压缩到200k以内的方法

热门文章

  1. ChemDraw绘制DNA结构的技巧
  2. 助力高效办公,TOM企业邮箱网页版全面升级
  3. dpdk mempool的逻辑
  4. 剑指offer_12_打印1到最大的n位数
  5. css3切角文本框_CSS3样式linear-gradient的使用(切角效果)
  6. stata学习笔记|异方差问题
  7. Vue之路由--SPA模式
  8. NCBI BLAST工具本地化
  9. 命令行快速删除当前行_在命令行中快速有效地工作
  10. 【3.3 ads篇(重点)】