Navigator

  • Robust formulation
  • Skew normal distribution
  • Empirical Tests
    • Matlab Code

Robust formulation

The robust version of the mean-variance problem can be expressed as
max⁡w∈Cmin⁡(μ^,Σ^)∈U(μ^,Σ^)μ^′w−βw′Σ^w\max_{w\in C}\min_{(\hat{\mu}, \hat{\Sigma})\in U_(\hat{\mu}, \hat{\Sigma})}\hat{\mu}'w-\beta w'\hat{\Sigma}w w∈Cmax​(μ^​,Σ^)∈U(​μ^​,Σ^)min​μ^​′w−βw′Σ^w
where U(μ^,Σ^)U_{(\hat{\mu}, \hat{\Sigma})}U(μ^​,Σ^)​ is a joint uncertainty set of (μ^,Σ^)(\hat{\mu}, \hat{\Sigma})(μ^​,Σ^).
U(μ^,Σ^)={(μ^1,Σ^1),…,(μ^I,Σ^I)}μ^i=1J∑jri,jΣ^j=1J−1∑j(ri,j−μ^i)(ri,j−μ^i)′U_{(\hat{\mu}, \hat{\Sigma})}=\{(\hat{\mu}_1, \hat{\Sigma}_1),\dots, (\hat{\mu}_I, \hat{\Sigma}_I) \}\\ \hat{\mu}_i=\frac{1}{J}\sum_j r_{i, j}\\ \hat{\Sigma}_j=\frac{1}{J-1}\sum_j(r_{i, j}-\hat{\mu}_i)(r_{i,j}-\hat{\mu}_i)' U(μ^​,Σ^)​={(μ^​1​,Σ^1​),…,(μ^​I​,Σ^I​)}μ^​i​=J1​j∑​ri,j​Σ^j​=J−11​j∑​(ri,j​−μ^​i​)(ri,j​−μ^​i​)′

Skew normal distribution

A random variable XXX follows a skew nromal distribution with a shape parameter α,X∼SN(α)\alpha, X\sim SN(\alpha)α,X∼SN(α), if its probability density function is
fX(x∣α)=2ϕ(x)Φ(αx)f_X(x\mid\alpha)=2\phi(x)\Phi(\alpha x) fX​(x∣α)=2ϕ(x)Φ(αx)
where x∈Rx\in\mathbb{R}x∈R, ϕ(x)\phi(x)ϕ(x) and Φ(x)\Phi(x)Φ(x) are the probability density function and the cumulative distribution function of a standard normal random variable, respectively, and α∈R\alpha\in\mathbb{R}α∈R. Furthermore, a skew normal distribution has the following main properties:

  • The skewness of distribution increases as the shape parameter α\alphaα increases. When α=0\alpha=0α=0, the distribution becomes standard normal.
  • E(X)=2πd,V(x)=1−2d2π\mathbb{E}(X)=\sqrt{\frac{2}{\pi}}d, \mathbb{V}(x)=1-\frac{2d^2}{\pi}E(X)=π2​​d,V(x)=1−π2d2​ and γ1=(4−π)E(X)32V(X)32\gamma_1=\frac{(4-\pi)\mathbb{E}(X)^3}{2\mathbb{V}(X)^{\frac{3}{2}}}γ1​=2V(X)23​(4−π)E(X)3​ and d=α1+α2d=\frac{\alpha}{\sqrt{1+\alpha^2}}d=1+α2​α​.
  • The linear transform Y=m+wXY=m+wXY=m+wX is skew normal random variable, and denoted by Y∼SN(m,w2,α)Y\sim SN(m, w^2, \alpha)Y∼SN(m,w2,α).
  • E(Y)=m+wX,V=w2V(X)\mathbb{E}(Y)=m+wX, \mathbb{V}=w^2\mathbb{V}(X)E(Y)=m+wX,V=w2V(X), and skewness of YYY is γ1\gamma_1γ1​.
  • The sum of skew normal random variables is skew normal.
  • γ1∈(−0.995,0.995)\gamma_1\in (-0.995, 0.995)γ1​∈(−0.995,0.995).

Restate this observation from the perspective of portfolio management. Suppose portfolio has a return distribution that is negatively skewed. Then, for the period that its realized return is relatively low, its realized volatility is likely to be high, and vice versa. When the portfolio return is positively skewed, the realized volatility tends to increase as realized return increases.
In fact, one can show that covariance between sample mean and sample variance is proportionate to the skewness
Cov(E(⋅),V(⋅))=μ3JCov(\mathbb{E}(\cdot), \mathbb{V}(\cdot))=\frac{\mu_3}{J} Cov(E(⋅),V(⋅))=Jμ3​​

The same intuition holds for the kurtosis. The worst case solution tends to get worse as the variance of fi(w)f_i(w)fi​(w) increases, and because V[Si2]=μ4−σ4\mathbb{V}[S_i^2]=\mu_4-\sigma^4V[Si2​]=μ4​−σ4, a portfolio with a heavy tailed return distribution is penalized by problem. Findings show that robust portfolios tend to produce return distributions with thinner tails than their nonrobust counterparts and are thus less likely to be affected by outliers.

Empirical Tests

To find the robust optimal portfolio from the problem, we solve the following equivalent convex quadratically constrained quadratic program (QCQP) formulation
max⁡w∈Czs.t.z≤μ^iw−βw′Σ^iw(i=1,2,…,I)\max_{w\in C} z\\ s.t.\quad z\leq \hat{\mu}_iw-\beta w'\hat{\Sigma}_iw\quad (i=1,2, \dots, I) w∈Cmax​zs.t.z≤μ^​i​w−βw′Σ^i​w(i=1,2,…,I)

Matlab Code

main function

%% generate simulated data
rng(729);
n = 10;
nDays = 500;
I = 100;
muA = zeros(n, I);
sigmaA = zeros(n, n, I);
for i = 1:Ireturns = randn(nDays, n);muA(:, i)= mean(returns)';sigmaA(:,:,i)=sqrt(cov(returns));
endopt_robust_cvx = func_qcqp_cvx(muA, sigmaA);
opt_robust_YALMIP = func_qcqp_YALMIP(muA, sigmaA);

cvx verision

function w = func_qcqp_cvx(muA, sigmaA)% input:% muA: n x I matrix where each column is a sample mean% sigmaA: n x n x I a three dimensional matrix where each page (n x n)% is a sample covariance matrix% output:% w: portfolio weights[n, I] = size(muA);beta = 1;cvx_beginvariables z w(n);maximize z;subject toones(1, n)*w==1;% I scenariosfor i=1:Iz<=muA(:, i)'*w-beta*quad_form(w, sigmaA(:, :, i));end  cvx_end
end

YALMIP version

function w = func_qcqp_YALMIP(muA, sigmaA)[n, I] = size(muA);beta = 1;w=sdpvar(n, 1);z=sdpvar;F = [sum(w)==1];for i=1:IS = sigmaA(:, :, i)'*sigmaA(:, :, i); % nxnF = [F, z<=muA(:, i)'*w-beta*w'*S*w];endobj = -z;optimize(F, obj);w = value(w);
end

【RO】Robust formulation controls higher moments相关推荐

  1. 【AP】Robust multi-period portfolio selection(3)

    Navigator Pre Blog Link Robust conterparts of multi-period portfolio problems The relationship betwe ...

  2. 【AP_EJOR】Robust solutions to multi-objective linear programs with uncertain data(1)

    Navigator Paper Link Introduction main contributions Preliminaries Paper Link Robust solutions to mu ...

  3. 【AP】Robust multi-period portfolio selection(2)

    Navigator Pre Blog Link Robust multi-period portfolio selection(1) Robust optimization and asymmetri ...

  4. 【翻译】Robust High-Resolution Video Matting with Temporal Guidance

    Robust High-Resolution Video Matting with Temporal Guidance 论文地址 RobustVideoMatting 代码地址 论文阅读笔记 版权声明 ...

  5. 【论文】——Robust High-Resolution Video Matting with Temporal Guidance浅读

    视频matting 时序监督 摘要 我们介绍了一种稳健.实时.高分辨率的人类视频抠图方法,该方法取得了新的最先进性能.我们的方法比以前的方法轻得多,可以在Nvidia GTX 1080Ti GPU上以 ...

  6. VINS-初始化:【翻译】Robust Initialization of Monocular Visual-Inertial Estimation on Aerial Robots

    目录 用于空中机器人的单目视觉惯性估计的鲁棒初始化 摘要 简介 综述 方法 纯视觉结构 IMU预积分 视觉-惯性对齐 非线性VINS估计 讨论 实验结果 在公共数据集上的性能 真实世界的实验 结论 用 ...

  7. 【SIGGRAPH】用【有说服力的照片真实】技术实现最终幻想15的视觉特效

    原文:西川善司 http://www.4gamer.net/games/075/G007535/20160726064/ 最终幻想15的演讲会场.相当大,听众非常多. 在本次计算机图形和交互技术大会[ ...

  8. 【论文】解读Robust bike-sharing stations allocation and path network design: a two-stage stochastic...

    解读Robust bike-sharing stations allocation and path network design: a two-stage stochastic programmin ...

  9. 【Verilog】跨时钟域设计Clock Domain Crossing Design(Multi cycle path formulation with feedback acknowledge)

    上次写了跨时钟域设计MCP公式不带反馈的实现[Verilog]跨时钟域设计Clock Domain Crossing (CDC) Design(MCP formulation without feed ...

最新文章

  1. 自动驾驶故障诊断与容错控制技术研究
  2. 浅谈ASP.NET的Postback
  3. STM32F407的硬件I2C
  4. python公式_Python读取excel文件中带公式的值的实现
  5. python调用jar 性能_亲自有效---python 调用jar
  6. 灯塔预计2022年春节档票房在70亿至80亿元之间
  7. 封条格式用word怎么打_汽车密封条保养膏怎么用?大师来教你正确方法
  8. JAVA Swing GUI设计 WindowBuilder Pro Container使用大全4——JSplitPane使用
  9. ansible的playbook进行yum批量安装nginx最新版本
  10. 深度学习笔记_搭建一个简单网络(完整版)_手写数字识别MNIST
  11. mysql 动态hash_Mysql 自定义HASH索引带来的巨大性能提升
  12. 恒流源差分放大电路静态分析_第11讲 差分放大电路_清华大学:模拟电子技术基础(华成英)_ppt_大学课件预览_高等教育资讯网...
  13. 美国如何保护关键信息基础设施
  14. python中的pd是什么意思_python中pd的用法 python中列表的用法
  15. 工训赛:从参赛到“弃赛”
  16. 互联网日报 | 格力回应被取消中标资格;微贷网涉嫌非吸被立案侦查;网易文创品牌全新发布...
  17. 手机cpu性能天梯图2022 手机cpu性能排行2022 手机cpu哪个好
  18. 常用的协议端口号(TCP and UDP)
  19. 博通Broadcom SDK源码学习与开发9——Interface接口管理
  20. 惠普dl20g9服务器系统分区,惠普商用笔记本预装WIN10系统如何分区

热门文章

  1. 路由规则——MVC控制器
  2. 代码规范+《数学之美》读后感
  3. 《程序员健康指南》作者Joe Kutner:在运动中工作
  4. Stay Hungry, Stay Foolish — 求知若饥,虚心若愚!
  5. 上班族怎么创业?白领一族创业当老板!
  6. 多元回归——matlab,R与spss
  7. 【xitongshoucang.com】全方位对Shift键大揭秘
  8. 完全卸载office(手动卸载)、微软工具自动卸载、安装Office时提示错误1310、写入文件“GROOVEEX“时错误,请确认您有权限访问该目录
  9. Android修改user版本默认关闭开发者选项模式,eng版本默认打开开发者选项模式
  10. 树莓派keras加载modle失败_特斯拉+树莓派实现车牌识别检测系统