文章目录

  • Snow 3G算法源码介绍

本人就职于国际知名终端厂商,负责modem芯片研发。
在5G早期负责终端数据业务层、核心网相关的开发工作,目前牵头6G算力网络技术标准研究。

博客内容主要围绕:
       5G协议讲解
       算力网络讲解(云计算,边缘计算,端计算)
       高级C语言讲解
       Rust语言讲解

Snow 3G算法源码介绍

rijndael.h

#ifndef RIJNDAEL_H_
#define RIJNDAEL_H_
/* Rijndael S-box SR */extern uint8_t SR[256];/* S-box SQ */
extern uint8_t SQ[256];
#endif

rijndael.c

#include <stdint.h>
/* Rijndael S-box SR */uint8_t SR[256] = {0x63,0x7C,0x77,0x7B,0xF2,0x6B,0x6F,0xC5,0x30,0x01,0x67,0x2B,0xFE,0xD7,0xAB,0x76,0xCA,0x82,0xC9,0x7D,0xFA,0x59,0x47,0xF0,0xAD,0xD4,0xA2,0xAF,0x9C,0xA4,0x72,0xC0,0xB7,0xFD,0x93,0x26,0x36,0x3F,0xF7,0xCC,0x34,0xA5,0xE5,0xF1,0x71,0xD8,0x31,0x15,0x04,0xC7,0x23,0xC3,0x18,0x96,0x05,0x9A,0x07,0x12,0x80,0xE2,0xEB,0x27,0xB2,0x75,0x09,0x83,0x2C,0x1A,0x1B,0x6E,0x5A,0xA0,0x52,0x3B,0xD6,0xB3,0x29,0xE3,0x2F,0x84,0x53,0xD1,0x00,0xED,0x20,0xFC,0xB1,0x5B,0x6A,0xCB,0xBE,0x39,0x4A,0x4C,0x58,0xCF,0xD0,0xEF,0xAA,0xFB,0x43,0x4D,0x33,0x85,0x45,0xF9,0x02,0x7F,0x50,0x3C,0x9F,0xA8,0x51,0xA3,0x40,0x8F,0x92,0x9D,0x38,0xF5,0xBC,0xB6,0xDA,0x21,0x10,0xFF,0xF3,0xD2,0xCD,0x0C,0x13,0xEC,0x5F,0x97,0x44,0x17,0xC4,0xA7,0x7E,0x3D,0x64,0x5D,0x19,0x73,0x60,0x81,0x4F,0xDC,0x22,0x2A,0x90,0x88,0x46,0xEE,0xB8,0x14,0xDE,0x5E,0x0B,0xDB,0xE0,0x32,0x3A,0x0A,0x49,0x06,0x24,0x5C,0xC2,0xD3,0xAC,0x62,0x91,0x95,0xE4,0x79,0xE7,0xC8,0x37,0x6D,0x8D,0xD5,0x4E,0xA9,0x6C,0x56,0xF4,0xEA,0x65,0x7A,0xAE,0x08,0xBA,0x78,0x25,0x2E,0x1C,0xA6,0xB4,0xC6,0xE8,0xDD,0x74,0x1F,0x4B,0xBD,0x8B,0x8A,0x70,0x3E,0xB5,0x66,0x48,0x03,0xF6,0x0E,0x61,0x35,0x57,0xB9,0x86,0xC1,0x1D,0x9E,0xE1,0xF8,0x98,0x11,0x69,0xD9,0x8E,0x94,0x9B,0x1E,0x87,0xE9,0xCE,0x55,0x28,0xDF,0x8C,0xA1,0x89,0x0D,0xBF,0xE6,0x42,0x68,0x41,0x99,0x2D,0x0F,0xB0,0x54,0xBB,0x16
};/* S-box SQ */uint8_t SQ[256] = {0x25,0x24,0x73,0x67,0xD7,0xAE,0x5C,0x30,0xA4,0xEE,0x6E,0xCB,0x7D,0xB5,0x82,0xDB,0xE4,0x8E,0x48,0x49,0x4F,0x5D,0x6A,0x78,0x70,0x88,0xE8,0x5F,0x5E,0x84,0x65,0xE2,0xD8,0xE9,0xCC,0xED,0x40,0x2F,0x11,0x28,0x57,0xD2,0xAC,0xE3,0x4A,0x15,0x1B,0xB9,0xB2,0x80,0x85,0xA6,0x2E,0x02,0x47,0x29,0x07,0x4B,0x0E,0xC1,0x51,0xAA,0x89,0xD4,0xCA,0x01,0x46,0xB3,0xEF,0xDD,0x44,0x7B,0xC2,0x7F,0xBE,0xC3,0x9F,0x20,0x4C,0x64,0x83,0xA2,0x68,0x42,0x13,0xB4,0x41,0xCD,0xBA,0xC6,0xBB,0x6D,0x4D,0x71,0x21,0xF4,0x8D,0xB0,0xE5,0x93,0xFE,0x8F,0xE6,0xCF,0x43,0x45,0x31,0x22,0x37,0x36,0x96,0xFA,0xBC,0x0F,0x08,0x52,0x1D,0x55,0x1A,0xC5,0x4E,0x23,0x69,0x7A,0x92,0xFF,0x5B,0x5A,0xEB,0x9A,0x1C,0xA9,0xD1,0x7E,0x0D,0xFC,0x50,0x8A,0xB6,0x62,0xF5,0x0A,0xF8,0xDC,0x03,0x3C,0x0C,0x39,0xF1,0xB8,0xF3,0x3D,0xF2,0xD5,0x97,0x66,0x81,0x32,0xA0,0x00,0x06,0xCE,0xF6,0xEA,0xB7,0x17,0xF7,0x8C,0x79,0xD6,0xA7,0xBF,0x8B,0x3F,0x1F,0x53,0x63,0x75,0x35,0x2C,0x60,0xFD,0x27,0xD3,0x94,0xA5,0x7C,0xA1,0x05,0x58,0x2D,0xBD,0xD9,0xC7,0xAF,0x6B,0x54,0x0B,0xE0,0x38,0x04,0xC8,0x9D,0xE7,0x14,0xB1,0x87,0x9C,0xDF,0x6F,0xF9,0xDA,0x2A,0xC4,0x59,0x16,0x74,0x91,0xAB,0x26,0x61,0x76,0x34,0x2B,0xAD,0x99,0xFB,0x72,0xEC,0x33,0x12,0xDE,0x98,0x3B,0xC0,0x9B,0x3E,0x18,0x10,0x3A,0x56,0xE1,0x77,0xC9,0x1E,0x9E,0x95,0xA3,0x90,0x19,0xA8,0x6C,0x09,0xD0,0xF0,0x86
};

snow3g.h

#ifndef SNOW3G_H_
#define SNOW3G_H_typedef struct snow_3g_context_s {uint32_t LFSR_S0;uint32_t LFSR_S1;uint32_t LFSR_S2;uint32_t LFSR_S3;uint32_t LFSR_S4;uint32_t LFSR_S5;uint32_t LFSR_S6;uint32_t LFSR_S7;uint32_t LFSR_S8;uint32_t LFSR_S9;uint32_t LFSR_S10;uint32_t LFSR_S11;uint32_t LFSR_S12;uint32_t LFSR_S13;uint32_t LFSR_S14;uint32_t LFSR_S15;/* FSM : The Finite State Machine has three 32-bit registers R1, R2 and R3.*/uint32_t FSM_R1;uint32_t FSM_R2;uint32_t FSM_R3;
} snow_3g_context_t;/* Initialization.
* Input k[4]: Four 32-bit words making up 128-bit key.
* Input IV[4]: Four 32-bit words making 128-bit initialization variable.
* Output: All the LFSRs and FSM are initialized for key generation.
*/
void snow3g_initialize(uint32_t k[4], uint32_t IV[4], snow_3g_context_t *snow_3g_context_pP);/* Generation of Keystream.
* input n: number of 32-bit words of keystream.
* input z: space for the generated keystream, assumes
* memory is allocated already.
* output: generated keystream which is filled in z
*/void snow3g_generate_key_stream(uint32_t n, uint32_t *z, snow_3g_context_t *snow_3g_context_pP);#endif

snow3g.c

#include <stdlib.h>
#include <stdio.h>
#include <stdint.h>
#include <string.h>#include "rijndael.h"
#include "snow3g.h"static uint8_t  _MULx(uint8_t V, uint8_t c);
static uint8_t  _MULxPOW(uint8_t V, uint8_t i, uint8_t c);
static uint32_t _MULalpha(uint8_t c);
static uint32_t _DIValpha(uint8_t c);
static uint32_t _S1(uint32_t w);
static uint32_t _S2(uint32_t w);
static void     _snow3g_clock_LFSR_initialization_mode(uint32_t F, snow_3g_context_t *s3g_ctx_pP);
static void     _snow3g_clock_LFSR_key_stream_mode(snow_3g_context_t *snow_3g_context_pP);
static uint32_t _snow3g_clock_fsm(snow_3g_context_t *snow_3g_context_pP);
void snow3g_initialize(uint32_t k[4], uint32_t IV[4], snow_3g_context_t *snow_3g_context_pP);
void snow3g_generate_key_stream(uint32_t n, uint32_t *ks, snow_3g_context_t *snow_3g_context_pP);/* _MULx.
* Input V: an 8-bit input.
* Input c: an 8-bit input.
* Output : an 8-bit input.
* MULx maps 16 bits to 8 bits
*/static uint8_t _MULx(uint8_t V, uint8_t c)
{//If the leftmost (i.e. the most significant) bit of V equals 1if ( V & 0x80 )return ( (V << 1) ^ c);elsereturn ( V << 1);
}/* _MULxPOW.
* Input V: an 8-bit input.
* Input i: a positive integer.
* Input c: an 8-bit input.
* Output : an 8-bit output.
* MULxPOW maps 16 bits and a positive integer i to 8 bit.
*/static uint8_t _MULxPOW(uint8_t V, uint8_t i, uint8_t c)
{if ( i == 0)return V;elsereturn _MULx( _MULxPOW( V, i-1, c ), c);
}/* The function _MULalpha.
* Input c: 8-bit input.
* Output : 32-bit output.
* maps 8 bits to 32 bits.
*/static uint32_t _MULalpha(uint8_t c)
{return  ( ( ((uint32_t)_MULxPOW(c,23, 0xa9)) << 24 ) |( ((uint32_t)_MULxPOW(c, 245, 0xa9)) << 16 ) |( ((uint32_t)_MULxPOW(c, 48, 0xa9)) << 8 ) |( ((uint32_t)_MULxPOW(c, 239, 0xa9))  ) ) ;
}/* The function DIV alpha.
* Input c: 8-bit input.
* Output : 32-bit output.
* maps 8 bits to 32 bit.
*/static uint32_t _DIValpha(uint8_t c)
{return  ( ( ((uint32_t)_MULxPOW(c, 16, 0xa9)) << 24 ) |( ((uint32_t)_MULxPOW(c, 39, 0xa9)) << 16 ) |( ((uint32_t)_MULxPOW(c, 6, 0xa9)) << 8 ) |( ((uint32_t)_MULxPOW(c, 64, 0xa9)) ) ) ;
}/* The 32x32-bit S-Box S1
* Input: a 32-bit input.
* Output: a 32-bit output of S1 box.
* The S-Box S1 maps a 32-bit input to a 32-bit output.
* w = w0 || w1 || w2 || w3 the 32-bit input with w0 the most and w3 the least significant byte.
* S1(w)= r0 || r1 || r2 || r3 with r0 the most and r3 the least significant byte.
*/static uint32_t _S1(uint32_t w)
{uint8_t r0=0, r1=0, r2=0, r3=0;uint8_t srw0 = SR[ (uint8_t)((w >> 24)  & 0xff) ];uint8_t srw1 = SR[ (uint8_t)((w >> 16)  & 0xff) ];uint8_t srw2 = SR[ (uint8_t)((w >> 8) & 0xff) ];uint8_t srw3 = SR[ (uint8_t)((w)    & 0xff) ];r0 =  ( ( _MULx( srw0 , 0x1b) ) ^( srw1 ) ^( srw2 ) ^( (_MULx( srw3, 0x1b)) ^ srw3 ));r1 =  ( ( ( _MULx( srw0 , 0x1b) ) ^ srw0 ) ^( _MULx(srw1, 0x1b) ) ^( srw2 ) ^( srw3 ));r2 =  ( ( srw0 ) ^( ( _MULx( srw1 , 0x1b) ) ^ srw1 ) ^( _MULx(srw2, 0x1b) ) ^( srw3 ));r3 =  ( ( srw0 ) ^( srw1 ) ^( ( _MULx( srw2 , 0x1b) ) ^ srw2 ) ^( _MULx( srw3, 0x1b) ));return ( ( ((uint32_t)r0) << 24 ) | ( ((uint32_t)r1) << 16 ) | ( ((uint32_t)r2) << 8 ) | ( ((uint32_t)r3) ) );
}/* The 32x32-bit S-Box S2
* Input: a 32-bit input.
* Output: a 32-bit output of S2 box.
* The S-Box S2 maps a 32-bit input to a 32-bit output.
* Let w = w0 || w1 || w2 || w3 the 32-bit input with w0 the most and w3 the least significant byte.
* Let S2(w)= r0 || r1 || r2 || r3 with r0 the most and r3 the least significant byte.
*/static uint32_t _S2(uint32_t w)
{uint8_t r0=0, r1=0, r2=0, r3=0;uint8_t sqw0 = SQ[ (uint8_t)((w >> 24)  & 0xff) ];uint8_t sqw1 = SQ[ (uint8_t)((w >> 16)  & 0xff) ];uint8_t sqw2 = SQ[ (uint8_t)((w >> 8)   & 0xff) ];uint8_t sqw3 = SQ[ (uint8_t)((w)    & 0xff) ];r0 =  ( ( _MULx( sqw0 , 0x69) ) ^( sqw1 ) ^( sqw2 ) ^( (_MULx( sqw3, 0x69)) ^ sqw3 ));r1 =  ( ( ( _MULx( sqw0 , 0x69) ) ^ sqw0 ) ^( _MULx(sqw1, 0x69) ) ^( sqw2 ) ^( sqw3 ));r2 =  ( ( sqw0 ) ^( ( _MULx( sqw1 , 0x69) ) ^ sqw1 ) ^( _MULx(sqw2, 0x69) ) ^( sqw3 ));r3 =  ( ( sqw0 ) ^( sqw1 ) ^( ( _MULx( sqw2 , 0x69) ) ^ sqw2 ) ^( _MULx( sqw3, 0x69) ));return ( ( ((uint32_t)r0) << 24 ) | ( ((uint32_t)r1) << 16 ) | ( ((uint32_t)r2) << 8 ) | ( ((uint32_t)r3) ) );
}/* Clocking LFSR in initialization mode.
* LFSR Registers S0 to S15 are updated as the LFSR receives a single clock.
* Input F: a 32-bit word comes from output of FSM.
* See section 3.4.4.
*/static void _snow3g_clock_LFSR_initialization_mode(uint32_t F, snow_3g_context_t *s3g_ctx_pP)
{uint32_t v = ( ( (s3g_ctx_pP->LFSR_S0 << 8) & 0xffffff00 )    ^( _MULalpha( (uint8_t)((s3g_ctx_pP->LFSR_S0>>24) & 0xff) ) )  ^( s3g_ctx_pP->LFSR_S2 )         ^( (s3g_ctx_pP->LFSR_S11 >> 8) & 0x00ffffff )    ^( _DIValpha( (uint8_t)( ( s3g_ctx_pP->LFSR_S11) & 0xff ) ) )  ^( F ));s3g_ctx_pP->LFSR_S0  = s3g_ctx_pP->LFSR_S1;s3g_ctx_pP->LFSR_S1  = s3g_ctx_pP->LFSR_S2;s3g_ctx_pP->LFSR_S2  = s3g_ctx_pP->LFSR_S3;s3g_ctx_pP->LFSR_S3  = s3g_ctx_pP->LFSR_S4;s3g_ctx_pP->LFSR_S4  = s3g_ctx_pP->LFSR_S5;s3g_ctx_pP->LFSR_S5  = s3g_ctx_pP->LFSR_S6;s3g_ctx_pP->LFSR_S6  = s3g_ctx_pP->LFSR_S7;s3g_ctx_pP->LFSR_S7  = s3g_ctx_pP->LFSR_S8;s3g_ctx_pP->LFSR_S8  = s3g_ctx_pP->LFSR_S9;s3g_ctx_pP->LFSR_S9  = s3g_ctx_pP->LFSR_S10;s3g_ctx_pP->LFSR_S10 = s3g_ctx_pP->LFSR_S11;s3g_ctx_pP->LFSR_S11 = s3g_ctx_pP->LFSR_S12;s3g_ctx_pP->LFSR_S12 = s3g_ctx_pP->LFSR_S13;s3g_ctx_pP->LFSR_S13 = s3g_ctx_pP->LFSR_S14;s3g_ctx_pP->LFSR_S14 = s3g_ctx_pP->LFSR_S15;s3g_ctx_pP->LFSR_S15 = v;
}/* Clocking LFSR in keystream mode.
* LFSR Registers S0 to S15 are updated as the LFSR receives a single clock.
* See section 3.4.5.
*/
static void _snow3g_clock_LFSR_key_stream_mode(snow_3g_context_t *snow_3g_context_pP)
{uint32_t v = ( ( (snow_3g_context_pP->LFSR_S0 << 8) & 0xffffff00 )    ^( _MULalpha( (uint8_t)((snow_3g_context_pP->LFSR_S0>>24) & 0xff) ) )  ^( snow_3g_context_pP->LFSR_S2 )         ^( (snow_3g_context_pP->LFSR_S11 >> 8) & 0x00ffffff )    ^( _DIValpha( (uint8_t)( ( snow_3g_context_pP->LFSR_S11) & 0xff ) ) ));snow_3g_context_pP->LFSR_S0  = snow_3g_context_pP->LFSR_S1;snow_3g_context_pP->LFSR_S1  = snow_3g_context_pP->LFSR_S2;snow_3g_context_pP->LFSR_S2  = snow_3g_context_pP->LFSR_S3;snow_3g_context_pP->LFSR_S3  = snow_3g_context_pP->LFSR_S4;snow_3g_context_pP->LFSR_S4  = snow_3g_context_pP->LFSR_S5;snow_3g_context_pP->LFSR_S5  = snow_3g_context_pP->LFSR_S6;snow_3g_context_pP->LFSR_S6  = snow_3g_context_pP->LFSR_S7;snow_3g_context_pP->LFSR_S7  = snow_3g_context_pP->LFSR_S8;snow_3g_context_pP->LFSR_S8  = snow_3g_context_pP->LFSR_S9;snow_3g_context_pP->LFSR_S9  = snow_3g_context_pP->LFSR_S10;snow_3g_context_pP->LFSR_S10 = snow_3g_context_pP->LFSR_S11;snow_3g_context_pP->LFSR_S11 = snow_3g_context_pP->LFSR_S12;snow_3g_context_pP->LFSR_S12 = snow_3g_context_pP->LFSR_S13;snow_3g_context_pP->LFSR_S13 = snow_3g_context_pP->LFSR_S14;snow_3g_context_pP->LFSR_S14 = snow_3g_context_pP->LFSR_S15;snow_3g_context_pP->LFSR_S15 = v;
}/* Clocking FSM.
* Produces a 32-bit word F.
* Updates FSM registers R1, R2, R3.
* See Section 3.4.6.
*/static uint32_t _snow3g_clock_fsm(snow_3g_context_t *snow_3g_context_pP)
{uint32_t F = ( ( snow_3g_context_pP->LFSR_S15 + snow_3g_context_pP->FSM_R1 ) & 0xffffffff ) ^ snow_3g_context_pP->FSM_R2 ;uint32_t r = ( snow_3g_context_pP->FSM_R2 + ( snow_3g_context_pP->FSM_R3 ^ snow_3g_context_pP->LFSR_S5 ) ) & 0xffffffff ;snow_3g_context_pP->FSM_R3 = _S2(snow_3g_context_pP->FSM_R2);snow_3g_context_pP->FSM_R2 = _S1(snow_3g_context_pP->FSM_R1);snow_3g_context_pP->FSM_R1 = r;return F;
}/*  Initialization.*  Input k[4]: Four 32-bit words making up 128-bit key.*  Input IV[4]: Four 32-bit words making 128-bit initialization variable.*  Output: All the LFSRs and FSM are initialized for key generation.*  See Section 4.1.*/void snow3g_initialize(uint32_t k[4], uint32_t IV[4], snow_3g_context_t *snow_3g_context_pP)
{uint8_t  i = 0;uint32_t F = 0x0;snow_3g_context_pP->LFSR_S15 = k[3] ^ IV[0];snow_3g_context_pP->LFSR_S14 = k[2];snow_3g_context_pP->LFSR_S13 = k[1];snow_3g_context_pP->LFSR_S12 = k[0] ^ IV[1];snow_3g_context_pP->LFSR_S11 = k[3] ^ 0xffffffff;snow_3g_context_pP->LFSR_S10 = k[2] ^ 0xffffffff ^ IV[2];snow_3g_context_pP->LFSR_S9  = k[1] ^ 0xffffffff ^ IV[3];snow_3g_context_pP->LFSR_S8  = k[0] ^ 0xffffffff;snow_3g_context_pP->LFSR_S7  = k[3];snow_3g_context_pP->LFSR_S6  = k[2];snow_3g_context_pP->LFSR_S5  = k[1];snow_3g_context_pP->LFSR_S4  = k[0];snow_3g_context_pP->LFSR_S3  = k[3] ^ 0xffffffff;snow_3g_context_pP->LFSR_S2  = k[2] ^ 0xffffffff;snow_3g_context_pP->LFSR_S1  = k[1] ^ 0xffffffff;snow_3g_context_pP->LFSR_S0  = k[0] ^ 0xffffffff;snow_3g_context_pP->FSM_R1   = 0x0;snow_3g_context_pP->FSM_R2   = 0x0;snow_3g_context_pP->FSM_R3   = 0x0;for(i=0; i<32; i++) {F = _snow3g_clock_fsm(snow_3g_context_pP);_snow3g_clock_LFSR_initialization_mode(F, snow_3g_context_pP);}}/*  Generation of Keystream.
* input n: number of 32-bit words of keystream.
*   input z: space for the generated keystream, assumes
*   memory is allocated already.
*   output: generated keystream which is filled in z
*   See section 4.2.
*/void snow3g_generate_key_stream(uint32_t n, uint32_t *ks, snow_3g_context_t *snow_3g_context_pP)
{uint32_t t = 0;uint32_t F = 0x0;_snow3g_clock_fsm(snow_3g_context_pP); /* Clock FSM once. Discard the output. */_snow3g_clock_LFSR_key_stream_mode(snow_3g_context_pP); /* Clock LFSR in keystream mode once. */for ( t=0; t<n; t++) {F = _snow3g_clock_fsm(snow_3g_context_pP);  /* STEP 1 */ks[t] = F ^ snow_3g_context_pP->LFSR_S0; /* STEP 2 *//* Note that ks[t] corresponds to z_{t+1} in section 4.2*/_snow3g_clock_LFSR_key_stream_mode(snow_3g_context_pP); /* STEP 3 */}
}

《Snow 3G算法源码介绍》
《128-bit AES算法源码介绍》
《ZUC算法源码介绍》

【5G/4G】128-EEA1与128-NEA1算法详解
【5G/4G】128-EEA2与128-NEA2算法详解
【5G/4G】128-EEA3与128-NEA3算法详解

【5G/4G】128-EIA1与128-NIA1算法详解
【5G/4G】128-EIA2与128-NIA2算法详解
【5G/4G】128-EIA3与128-NIA3算法详解


【5G/4G】Snow 3G算法源码介绍相关推荐

  1. 【5G/4G】128-bit AES算法源码介绍

    文章目录 128-bit AES算法源码介绍 本人就职于国际知名终端厂商,负责modem芯片研发. 在5G早期负责终端数据业务层.核心网相关的开发工作,目前牵头6G算力网络技术标准研究. 博客内容主要 ...

  2. 【5G/4G】加/解密+完整性保护/校验算法源码详解

    文章目录 加/解密+完整性保护/校验算法源码详解 一.加解密算法 二.完整性保护/校验算法 本人就职于国际知名终端厂商,负责modem芯片研发. 在5G早期负责终端数据业务层.核心网相关的开发工作,目 ...

  3. Learning to Rank中Pointwise关于PRank算法源码实现

    [学习排序] Learning to Rank中Pointwise关于PRank算法源码实现 标签: 学习排序PRankPointwiseLearning to Rank代码实现 2015-01-28 ...

  4. 深度增强学习DDPG(Deep Deterministic Policy Gradient)算法源码走读

    原文链接:https://blog.csdn.net/jinzhuojun/article/details/82556127 本文是基于OpenAI推出deep reinforcement learn ...

  5. 100种目标检测数据集【voc格式yolo格式json格式coco格式】+YOLO系列算法源码及训练好的模型

    提示:本文介绍并分享了应用于各行业.各领域非常有用的目标检测数据集(感谢您的关注+三连,数据集持续更新中-),其中绝大部分数据集作者已应用于各种实际落地项目,数据集整体质量好,标注精确,数据的多样性充 ...

  6. Caffe框架下SSD算法源码综述

    ssd源码相比于caffe架构主要添加了flatten,normal,prior,detection,multibox等层,其中最重要的难点是multibox层和multibox,通过学习ssd源码可 ...

  7. 海外某音x-gorgon算法原理分析及算法源码公布

    算法源码见附件 分享一个去年逆的一个海外版某音 1474版本 x-gorgon算法,这里简单介绍一下算法原理,首先malloc出来一个0x1A大小的空间,然后截取用户传入的byte数组中的参数,截取开 ...

  8. [unity3d]recast navigation navmesh 导航网格 寻路算法 源码分析

    recast navigation navmesh导航网格算法源码分析 Author:  林绍川 recast navigation navmesh是unity3d ue4内置的寻路算法 本文为了方便 ...

  9. 4- vue django restful framework 打造生鲜超市 -restful api 与前端源码介绍

    使用Python3.6与Django2.0.2(Django-rest-framework)以及前端vue开发的前后端分离的商城网站 项目支持支付宝支付(暂不支持微信支付),支持手机短信验证码注册, ...

最新文章

  1. 【C++】多线程与原子操作和无锁编程【五】
  2. 《Hadoop集群与安全》一2.1 在Hadoop集群中配置操作系统
  3. Linux xsync分发脚本完整内容
  4. node多版本管理--nvmw
  5. java 字节输入流_JavaIO流(一)-字节输入流与字符输入流
  6. LeetCode 653. 两数之和 IV - 输入 BST(二叉搜索树迭代器双指针)
  7. Oracle EBS 入门
  8. 儿童节到了,你会让孩子将来当程序员吗?
  9. 终于学会后空翻!历经多次NG,波士顿动力机器人再get新技能
  10. python mockito arg_that_编程高阶用法–开发者高频词汇
  11. 我们在 web 应用开发过程中经常遇到输出某种编码的字 符, 如 iso8859-1 等, 如何输出一个某种编码的字符串?...
  12. YetAnotherKeyDisplayer(YAKD屏幕上显示键盘操作)源码下载及编译(Win10,VS2022)
  13. 成语小秀才小程序源码-小程序前端-小程序吸粉引流源码
  14. 学编程考计算机二级,如何通过计算机一、二级考试?方法很重要,过来人的经验告诉你...
  15. leetcode 376. 摆动序列(三种解法)
  16. HCIE--路由交换--IGP部分实验详解
  17. 002 反相器的动态特性
  18. Plotly.js使用详细介绍(折线图、饼状图、点图、水平条形图、桑基图、树状图、等值线图)
  19. linux图像编辑,Photoflare:Linux下简单的开源图像编辑器
  20. 数据结构与算法是什么?

热门文章

  1. ryzen linux mac,AMD Ryzen平台全新的mac10.13.3的简洁安装镜像
  2. Spring Boot+SpringMVC使用ueditor(jsp版)
  3. 如何应用金字塔模型提高结构化表达能力
  4. mysql为什么使用B+树作为索引结构?
  5. matlab 产生伪随机序列
  6. 驱云驭智,新华三释放数字大脑新动能
  7. 【情报百科】寻找乌云下的飞机
  8. 1-8记录联合查询与注入逻辑
  9. 就当做LaTeX练习(
  10. 为什么L1惩罚L2惩罚更容易得到稀疏解