关于GCD基础知识的文章很多,但很多都停留在iOS早期版本的状态,随着iOS的升级GCD的使用也随之升级了,下面举了很多例子来看一看。

1、串行队列使用同步运行

1、普通队列同步运行
let queue = DispatchQueue(label:"com.test")
queue.sync{for _ in 0..<6 {print("aaaaaaa\(Thread.current)")}
}
for _ in 0..<6  {print("bbbbbbb\(Thread.current)")
}  

运行结果:

aaaaaaa<NSThread: 0x6040002608c0>{number = 1, name = main}

aaaaaaa<NSThread: 0x6040002608c0>{number = 1, name = main}

aaaaaaa<NSThread: 0x6040002608c0>{number = 1, name = main}

aaaaaaa<NSThread: 0x6040002608c0>{number = 1, name = main}

aaaaaaa<NSThread: 0x6040002608c0>{number = 1, name = main}

aaaaaaa<NSThread: 0x6040002608c0>{number = 1, name = main}

bbbbbbb<NSThread: 0x6040002608c0>{number = 1, name = main}

bbbbbbb<NSThread: 0x6040002608c0>{number = 1, name = main}

bbbbbbb<NSThread: 0x6040002608c0>{number = 1, name = main}

bbbbbbb<NSThread: 0x6040002608c0>{number = 1, name = main}

bbbbbbb<NSThread: 0x6040002608c0>{number = 1, name = main}

bbbbbbb<NSThread: 0x6040002608c0>{number = 1, name = main}

结果分析:

串行队形完全阻断了主线程的运行,都使用main线程,这种写法是完全没有意义的。

2、串行队列使用异步运行

//2、普通队列异步运行
let queue = DispatchQueue(label:"com.test")
queue.async{for _ in 0..<6 {print("aaaaaaa\(Thread.current)")}
}
for _ in 0..<6  {print("bbbbbbb\(Thread.current)")
}

运行结果:

bbbbbbb<NSThread: 0x604000066580>{number = 1, name = main}

aaaaaaa<NSThread: 0x600000071680>{number = 3, name = (null)}

aaaaaaa<NSThread: 0x600000071680>{number = 3, name = (null)}

bbbbbbb<NSThread: 0x604000066580>{number = 1, name = main}

aaaaaaa<NSThread: 0x600000071680>{number = 3, name = (null)}

bbbbbbb<NSThread: 0x604000066580>{number = 1, name = main}

bbbbbbb<NSThread: 0x604000066580>{number = 1, name = main}

bbbbbbb<NSThread: 0x604000066580>{number = 1, name = main}

bbbbbbb<NSThread: 0x604000066580>{number = 1, name = main}

aaaaaaa<NSThread: 0x600000071680>{number = 3, name = (null)}

aaaaaaa<NSThread: 0x600000071680>{number = 3, name = (null)}

aaaaaaa<NSThread: 0x600000071680>{number = 3, name = (null)}

运行结果分析:

串行队列任务与主线程并行,串行队列使用了新的线程3,感觉上就像自己启了一个线程在做事情,使用DispatchQueue会方便很多。

3、串行队列多次运行

//3、普通队列异步运行多次
let queue = DispatchQueue(label:"com.test",qos:DispatchQoS.unspecified)
queue.async{for _ in 0..<6 {print("aaaaaaa\(Thread.current)")}
}
queue.async{for _ in 0..<6 {print("cccccc\(Thread.current)")}
}
for _ in 0..<6  {print("bbbbbbb\(Thread.current)")
}

运行结果:

bbbbbbb<NSThread: 0x60400007cc40>{number = 1, name = main}

aaaaaaa<NSThread: 0x604000264a80>{number = 3, name = (null)}

aaaaaaa<NSThread: 0x604000264a80>{number = 3, name = (null)}

bbbbbbb<NSThread: 0x60400007cc40>{number = 1, name = main}

bbbbbbb<NSThread: 0x60400007cc40>{number = 1, name = main}

aaaaaaa<NSThread: 0x604000264a80>{number = 3, name = (null)}

bbbbbbb<NSThread: 0x60400007cc40>{number = 1, name = main}

aaaaaaa<NSThread: 0x604000264a80>{number = 3, name = (null)}

bbbbbbb<NSThread: 0x60400007cc40>{number = 1, name = main}

bbbbbbb<NSThread: 0x60400007cc40>{number = 1, name = main}

aaaaaaa<NSThread: 0x604000264a80>{number = 3, name = (null)}

aaaaaaa<NSThread: 0x604000264a80>{number = 3, name = (null)}

cccccc<NSThread: 0x604000264a80>{number = 3, name = (null)}

cccccc<NSThread: 0x604000264a80>{number = 3, name = (null)}

cccccc<NSThread: 0x604000264a80>{number = 3, name = (null)}

cccccc<NSThread: 0x604000264a80>{number = 3, name = (null)}

cccccc<NSThread: 0x604000264a80>{number = 3, name = (null)}

cccccc<NSThread: 0x604000264a80>{number = 3, name = (null)}

运行结果分析:

队形中任务与主线程并行且使用了新的线程3,这里可以看处理,串行队列只有等第一个任务运行完才执行第二个(所以aaaaaa打印完,才有cccccc),这里例子很适合做并发中互斥操作,不使用锁。

4、并行队列异步运行多次

//4、并行队列异步运行多次
let queue = DispatchQueue(label:"com.test",qos:DispatchQoS.unspecified,attributes:.concurrent)
queue.async{for _ in 0..<6 {print("aaaaaaa\(Thread.current)")}
}
queue.async{for _ in 0..<6 {print("cccccc\(Thread.current)")}
}
for _ in 0..<6  {print("bbbbbbb\(Thread.current)")
}  

运行结果:

bbbbbbb<NSThread: 0x604000079c00>{number = 1, name = main}

aaaaaaa<NSThread: 0x6040002657c0>{number = 4, name = (null)}

cccccc<NSThread: 0x600000267380>{number = 3, name = (null)}

bbbbbbb<NSThread: 0x604000079c00>{number = 1, name = main}

aaaaaaa<NSThread: 0x6040002657c0>{number = 4, name = (null)}

cccccc<NSThread: 0x600000267380>{number = 3, name = (null)}

bbbbbbb<NSThread: 0x604000079c00>{number = 1, name = main}

cccccc<NSThread: 0x600000267380>{number = 3, name = (null)}

bbbbbbb<NSThread: 0x604000079c00>{number = 1, name = main}

aaaaaaa<NSThread: 0x6040002657c0>{number = 4, name = (null)}

bbbbbbb<NSThread: 0x604000079c00>{number = 1, name = main}

bbbbbbb<NSThread: 0x604000079c00>{number = 1, name = main}

cccccc<NSThread: 0x600000267380>{number = 3, name = (null)}

cccccc<NSThread: 0x600000267380>{number = 3, name = (null)}

aaaaaaa<NSThread: 0x6040002657c0>{number = 4, name = (null)}

cccccc<NSThread: 0x600000267380>{number = 3, name = (null)}

aaaaaaa<NSThread: 0x6040002657c0>{number = 4, name = (null)}

aaaaaaa<NSThread: 0x6040002657c0>{number = 4, name = (null)}

运行结果分析:

并行队列的2个任务与主线程同时运行,并行队列中任务分别使用线程3和线程4,这是一个并发的场景,比如我们一边加载不同图片一边不会影响UI的响应;这里也可以看出串行队列与并行队列的不同之处。

5、多个串行队列异步运行

let queue = DispatchQueue(label:"com.test",qos:DispatchQoS.unspecified)
let queue2 = DispatchQueue(label:"com.test",qos:DispatchQoS.userInteractive)
queue.async{for _ in 0..<16 {print("aaaaaaa\(Thread.current)")}
}
queue2.async{for _ in 0..<16 {print("cccccc\(Thread.current)")}
}

运行结果:

cccccc<NSThread: 0x60400006ec80>{number = 3, name = (null)}

aaaaaaa<NSThread: 0x60400006ecc0>{number = 4, name = (null)}

cccccc<NSThread: 0x60400006ec80>{number = 3, name = (null)}

aaaaaaa<NSThread: 0x60400006ecc0>{number = 4, name = (null)}

cccccc<NSThread: 0x60400006ec80>{number = 3, name = (null)}

aaaaaaa<NSThread: 0x60400006ecc0>{number = 4, name = (null)}

cccccc<NSThread: 0x60400006ec80>{number = 3, name = (null)}

aaaaaaa<NSThread: 0x60400006ecc0>{number = 4, name = (null)}

cccccc<NSThread: 0x60400006ec80>{number = 3, name = (null)}

aaaaaaa<NSThread: 0x60400006ecc0>{number = 4, name = (null)}

cccccc<NSThread: 0x60400006ec80>{number = 3, name = (null)}

cccccc<NSThread: 0x60400006ec80>{number = 3, name = (null)}

aaaaaaa<NSThread: 0x60400006ecc0>{number = 4, name = (null)}

cccccc<NSThread: 0x60400006ec80>{number = 3, name = (null)}

cccccc<NSThread: 0x60400006ec80>{number = 3, name = (null)}

aaaaaaa<NSThread: 0x60400006ecc0>{number = 4, name = (null)}

cccccc<NSThread: 0x60400006ec80>{number = 3, name = (null)}

aaaaaaa<NSThread: 0x60400006ecc0>{number = 4, name = (null)}

cccccc<NSThread: 0x60400006ec80>{number = 3, name = (null)}

aaaaaaa<NSThread: 0x60400006ecc0>{number = 4, name = (null)}

cccccc<NSThread: 0x60400006ec80>{number = 3, name = (null)}

cccccc<NSThread: 0x60400006ec80>{number = 3, name = (null)}

aaaaaaa<NSThread: 0x60400006ecc0>{number = 4, name = (null)}

cccccc<NSThread: 0x60400006ec80>{number = 3, name = (null)}

aaaaaaa<NSThread: 0x60400006ecc0>{number = 4, name = (null)}

cccccc<NSThread: 0x60400006ec80>{number = 3, name = (null)}

aaaaaaa<NSThread: 0x60400006ecc0>{number = 4, name = (null)}

cccccc<NSThread: 0x60400006ec80>{number = 3, name = (null)}

aaaaaaa<NSThread: 0x60400006ecc0>{number = 4, name = (null)}

aaaaaaa<NSThread: 0x60400006ecc0>{number = 4, name = (null)}

aaaaaaa<NSThread: 0x60400006ecc0>{number = 4, name = (null)}

aaaaaaa<NSThread: 0x60400006ecc0>{number = 4, name = (null)}

运行结果分析:

例子中队列2的优先级比队列1高,所以cccccc在aaaaaa之前打印完,2个不同的串行队列使用不同的线程3和4,并行队列的优先级比较也是一样的结果,这里就不发例子

6、使用DispatchGroup做任务依赖

queue先做一个短任务,并行的queue2做一个长任务,等2个任务都做完group通知queue接着做任务,任务C依赖与任务A和任务B同时完成。

let queue = DispatchQueue(label:"com.test",qos:DispatchQoS.unspecified)
let queue2 = DispatchQueue(label:"com.test",qos:DispatchQoS.userInteractive)
let group = DispatchGroup()
queue.async(group: group, execute: {for _ in 0..<3 {print("aaaaaaa\(Thread.current)")}
})
queue2.async(group: group, execute: {for _ in 0..<6 {print("bbbbb\(Thread.current)")}
})//执行完上面的两个耗时操作, 回到queue队列中执行下一步的任务
group.notify(queue: queue) {print("回到queue该队列中执行")for _ in 0..<3 {print("bbbbb\(Thread.current)")}
}

运行结果:

bbbbb<NSThread: 0x604000078540>{number = 3, name = (null)}

aaaaaaa<NSThread: 0x604000078580>{number = 4, name = (null)}

bbbbb<NSThread: 0x604000078540>{number = 3, name = (null)}

aaaaaaa<NSThread: 0x604000078580>{number = 4, name = (null)}

bbbbb<NSThread: 0x604000078540>{number = 3, name = (null)}

aaaaaaa<NSThread: 0x604000078580>{number = 4, name = (null)}

bbbbb<NSThread: 0x604000078540>{number = 3, name = (null)}

bbbbb<NSThread: 0x604000078540>{number = 3, name = (null)}

bbbbb<NSThread: 0x604000078540>{number = 3, name = (null)}

回到queue该队列中执行

cccccc<NSThread: 0x604000078580>{number = 4, name = (null)}

cccccc<NSThread: 0x604000078580>{number = 4, name = (null)}

cccccc<NSThread: 0x604000078580>{number = 4, name = (null)}

运行结果分析:

2任务分别运行做线程3和4,等他们都做完再到queue中打印cccccc

7、使用DispatchGroup做任务等待

queue和queue2是2个并行的队列,queue2中sleep(UInt32(3))可以让queue2超时

let queue = DispatchQueue(label:"com.test",qos:DispatchQoS.unspecified)
let queue2 = DispatchQueue(label:"com.test",qos:DispatchQoS.userInteractive)
let group = DispatchGroup()
queue.async(group: group, execute: {for _ in 0..<3 {print("aaaaaaa\(Thread.current)")}
})
queue2.async(group: group, execute: {for _ in 0..<6 {print("bbbbb\(Thread.current)")}//sleep(UInt32(3))
})//等待上面任务执行,会阻塞当前线程,超时就执行下面的,上面的继续执行。可以无限等待 .distantFuture
let result:DispatchTimeoutResult = group.wait(timeout: .now() + 2.0)
switch result {
case .success:print("不超时, 上面的两个任务都执行完")
case .timedOut:print("超时了, 上面的任务还没执行完执行这了")
}print("接下来的操作")

  

打开sleep(UInt32(3)) 的结果:

aaaaaaa<NSThread: 0x604000273140>{number = 4, name = (null)}
bbbbb<NSThread: 0x6000004703c0>{number = 3, name = (null)}
aaaaaaa<NSThread: 0x604000273140>{number = 4, name = (null)}
bbbbb<NSThread: 0x6000004703c0>{number = 3, name = (null)}
bbbbb<NSThread: 0x6000004703c0>{number = 3, name = (null)}
bbbbb<NSThread: 0x6000004703c0>{number = 3, name = (null)}
aaaaaaa<NSThread: 0x604000273140>{number = 4, name = (null)}
bbbbb<NSThread: 0x6000004703c0>{number = 3, name = (null)}
bbbbb<NSThread: 0x6000004703c0>{number = 3, name = (null)}
超时了, 上面的任务还没执行完执行这了
接下来的操作

注解sleep(UInt32(3))结果:

bbbbb<NSThread: 0x604000273280>{number = 3, name = (null)}
aaaaaaa<NSThread: 0x600000278e00>{number = 4, name = (null)}
aaaaaaa<NSThread: 0x600000278e00>{number = 4, name = (null)}
bbbbb<NSThread: 0x604000273280>{number = 3, name = (null)}
aaaaaaa<NSThread: 0x600000278e00>{number = 4, name = (null)}
bbbbb<NSThread: 0x604000273280>{number = 3, name = (null)}
bbbbb<NSThread: 0x604000273280>{number = 3, name = (null)}
bbbbb<NSThread: 0x604000273280>{number = 3, name = (null)}
bbbbb<NSThread: 0x604000273280>{number = 3, name = (null)}
不超时, 上面的两个任务都执行完
接下来的操作

结果分析:

可以用Group的wait方法来做超时判断。

ps:例子多了点,都是一个一个字码的,系统对学习Swift的GCD有用。

转载于:https://www.cnblogs.com/sakaiPeng/p/9808733.html

用例子看Swift4的GCD相关推荐

  1. 一个简单的例子看java线程机制

    一个简单的例子看java线程机制 作者: zyf0808 发表日期: 2006-03-26 11:20 文章属性: 原创 复制链接 import java.util.*; public class T ...

  2. 抽象语法树 c语言,一个简单的例子看懂抽象语法树的魔力

    在计算机科学中,抽象语法树(Abstract Syntax Tree,AST),或简称语法树(Syntax tree),是源代码语法结构的一种抽象表示.它以树状的形式表现编程语言的语法结构,树上的每个 ...

  3. 从一个小例子看贝叶斯公式的应用(学习简单、基础、入门的例子)

    #从一个小例子看贝叶斯公式的应用 ###应用Bayesian公式考察如下的实例并回答问题. 张某为了解自己患上了X疾病的可能性,去医院作常规血液检查.其结果居然为阳性,他赶忙到网上查询.根据网上的资料 ...

  4. 通过几个例子看sed的模式空间与保持空间

    SED之所以能以行为单位的编辑或修改文本,其原因在于它使用了两个空间:一个是活动的"模式空间(pattern space)",另一个是起辅助作用的"暂存缓冲区(holdi ...

  5. 从一个微型例子看“C/C++的内存分配机制”和“数组变量名与指针变量名”

    内存分配方式有三种: 从静态存储区域分配.内存在程序编译的时候就已经分配好,这块内存在程序的整个运行期间都存在.例如全局变量,static变量. 在栈上创建. 在执行函数时,函数内局部变量的存储单元都 ...

  6. 见微智著 - 从一个小例子看Python中的单元测试

    单元测试 据统计,由于软件缺陷(bug),美国经济每年在浪费生产力.返工和实际毁坏上损失了数十亿美元.近期最严重的案例是波音737 Max飞机的两次重大坠机事故,共造成了346人死亡.经过初步调查,该 ...

  7. 《Spring事务传播行为详解》经典例子 看完这篇,别的不用看了

    前言 Spring在TransactionDefinition接口中规定了7种类型的事务传播行为.事务传播行为是Spring框架独有的事务增强特性,他不属于的事务实际提供方数据库行为.这是Spring ...

  8. Swift4 使用GCD实现计时器

    开发过程中,我们可能会经常使用到计时器.苹果为我们提供了Timer.但是在平时使用过程中会发现使用Timer会有许多的不便 1:必须保证在一个活跃的runloop,我们知道主线程的runloop是活跃 ...

  9. 一个例子看懂kotlin的集合和序列

    构造对比: 1.集合 这里setOf和mutableSetOf就是一个只读,一个支持修改处理.因为集合泛型的擦除,val和var其实不能控制只读和读写.故用这种构造方法. // 挨个元素传入 val ...

最新文章

  1. python ix loc iloc_pandas中的iloc、loc、ix有什么区别?
  2. SAP SD基础知识之文本确定(Text Determination)
  3. Py之pandas:利用pandas工具输出每行的索引值、及其对应的行数据
  4. 【PP】通过创建工程变更号修改BOM
  5. 在c语言中优先级最低的是6,C语言中 *,<<,= ,->哪个优先级最低
  6. Python装饰器(一)
  7. eslint 换行_ESLint代码风格检测
  8. 动手学深度学习(PyTorch实现)(三)--过拟合与欠拟合
  9. UE4移动平台上基于物理的着色
  10. word图片靠右_如何设置word图片边缘透明
  11. buffer cache 内存管理物理结构纯干货
  12. 基于vue-cli的多页面应用脚手架
  13. adb ps shell 查看进程_Appium学废系列(三) adb调试桥命令
  14. SIFT特征原理与理解
  15. PHP数组和字符串函数
  16. android fragment 设置透明,DialogFragment背景透明设置
  17. intellij idea设置主题、字体样式和背景色
  18. 工业4.0细谈MES制造执行系统
  19. 微信公众账号分类入门知识
  20. z怎么查看mysql的用户名_怎么查看mysql的用户名和密码

热门文章

  1. Java实例方法和类方法的区别
  2. oracle11g trc 文件,Oracle11g11.2.0.1设置HuagePage导致TRC变大变多
  3. Javamysql语法转化oracle_MySQL到Oracle语法错误(限制/偏移/更新)
  4. vue 安装element_vue实战开发007:vue引入Element-UI并配置路由
  5. metainfo可以设置说明_Vs Code安装说明及入门操作
  6. vbs 获取计算机主机名,vbs 获取主机名
  7. java复制文件的命名_java-复制文件时在文件名扩展名前附加“复...
  8. 安卓选择多张图片上传_微信7.0.5更新!安卓客户端领先ios发布,新增多项实用功能...
  9. java中char类型可以存储两个中文字符吗
  10. js中src赋值理解