文章目录

  • Lec 5 APT Model-Multi Factor Model 套利定价理论-多因子模型
    • Problem of CAPM
    • Basic idea of ATP
      • Expected and Unexpected return
      • Systematic and unsystematic risk
      • Driving Arbitrage Pricing Theory Model

Lec 5 APT Model-Multi Factor Model 套利定价理论-多因子模型

Problem of CAPM

  • Since CAPM is based on historical data it is most appropriate when conditions are relatively stable. If conditions change, the beta coefficient estimated from the sample may not correspond to the likely future value. CAPM是基于历史数据的,因此在条件稳定的时候最准确。如果条件改变,从历史数据中估计出的beta系数可能于未来值不符,从而产生定价偏差。
  • The efficacy of CAPM tests is conditional on the efficiency of the market portfolio. The index turns out to be ex-post efficient, if every asset is falling on the security market line. CAPM测试的有效性取决于市场组合的效率。如果所有资产都落在证券市场线上,那么该指数就具有事后效率。

Basic idea of ATP

The idea of arbitrage underlies the APT. Arbitrage ensures that the same “bundle” of systematic risks sells for the same price.

Expected and Unexpected return

R‾i\overline{R}_iRi​: is expected return, is not a random variable and is not the source of risk.

uiu_iui​: is unexpected shocks and the risk raises from it. The characteristic of uiu_iui​ will influences R‾i\overline{R}_iRi​

Ri=R‾i+uiR_i=\overline{R}_i+u_iRi​=Ri​+ui​

Systematic and unsystematic risk

ui=mi+ϵiu_i=m_i+\epsilon_iui​=mi​+ϵi​

  • Systematic risk for asset iii, mim_imi​, is then related to unexpected economy-wide shocks (such as unanticipated fluctuations in GNP, inflation, the terms of trade or real interest rates):
    mi=βiYFY+βiπFπ+βiXFX+βirFrm_i=\beta_{iY}F_Y+\beta_{i\pi}F_{\pi}+\beta_{iX}F_X+\beta_{ir}F_r mi​=βiY​FY​+βiπ​Fπ​+βiX​FX​+βir​Fr​
    Systematic risk mim_imi​ cannot be eliminated by holding a diversified portfolio.

  • In a kkk-factor model we simply use a numerical index to denote each of the systematic risks affecting returns on stock iii:
    Ri=R‾i+ui=R‾i+βi1F1+βi2F2+⋯+βikFk+ϵiR_i=\overline {R}_i+u_i=\overline {R}_i+\beta_{i1}F_1+\beta_{i2}F_2+\dots+\beta_{ik}F_k+\epsilon_i Ri​=Ri​+ui​=Ri​+βi1​F1​+βi2​F2​+⋯+βik​Fk​+ϵi​
    Unsystematic risk ϵi\epsilon_iϵi​ can be eliminated by holding a diversified portfolio. For market portfolio xM\pmb x_MxxxM​ with NNN stocks, ϵi\epsilon_iϵi​ satisfies
    Var(∑i=1Nxiϵi)=0Var(\displaystyle\sum_{i=1}^Nx_i\epsilon_i)=0 Var(i=1∑N​xi​ϵi​)=0

Arbitrage also implies the expected return R‾i\overline R_iRi​, on a stock iii will depend on the βij\beta_{ij}βij​ coefficients showing how systematic unexpected shocks FjF_jFj​ affect unexpected returns ui=Ri−R‾iu_i=R_i-\overline{R}_iui​=Ri​−Ri​.

And the equilibrium returns R‾Fj\overline R_{F_j}RFj​​, for bearing “one unit” of each type of systematic shock FjF_jFj​. So we have:
R‾i=r+βi1[R‾F1−r]+βi2[R‾F2−r]+⋯+βik[R‾Fk−r]\overline {R}_i=r+\beta_{i1}[\overline R_{F_1}-r]+\beta_{i2}[\overline R_{F_2}-r]+\dots+\beta_{ik}[\overline R_{F_k}-r] Ri​=r+βi1​[RF1​​−r]+βi2​[RF2​​−r]+⋯+βik​[RFk​​−r]
Plug in, we get the Actual Returns under APT:
Ri=R‾i+βi1F1+βi2F2+⋯+βikFk+ϵi=r+∑j=1kβij[R‾Fj−r]+∑j=1kβijFj\begin{aligned} R_i&=\overline {R}_i+\beta_{i1}F_1+\beta_{i2}F_2+\dots+\beta_{ik}F_k+\epsilon_i \\ &=r+\displaystyle\sum_{j=1}^k\beta_{ij}[\overline R_{F_j}-r]+\displaystyle\sum_{j=1}^k\beta_{ij}F_j \end{aligned} Ri​​=Ri​+βi1​F1​+βi2​F2​+⋯+βik​Fk​+ϵi​=r+j=1∑k​βij​[RFj​​−r]+j=1∑k​βij​Fj​​

  • β\betaβ for a stock has two effects on its actual returns

Question:

(1) How do CAPM and APT models explain systematic risk and unsystematic risk for an asset (or stock) in the stock market respectively?

(2) Are CAPM and APT consistent (or compatible) ? Please show it.

(3) Compare the advantages of APT model over CAPM

(1)

CAPM
Ri−r=αi+βi(RM−r)+ϵiR_i-r=\alpha_i+\beta_i(R_M-r)+\epsilon_i Ri​−r=αi​+βi​(RM​−r)+ϵi​

  • Term βi(RM−r)\beta_i(R_M-r)βi​(RM​−r) corresponds to the systematic risk, which cannot be diversified.

  • The error term ϵi\epsilon_iϵi​ corresponds to the unsystematic risk, which satisfies Cov(ϵi,RM)=0Cov(\epsilon_i,R_M)=0Cov(ϵi​,RM​)=0.

Hence the following decomposition of total risk as measured by the variance is possible:
Var(Ri)=βi2Var(RM)+Var(ϵi)Var(R_i)=\beta_i^2Var(R_M)+Var(\epsilon_i) Var(Ri​)=βi2​Var(RM​)+Var(ϵi​)
APT
Ri=R‾i+ui=R‾i+mi+ϵiR_i=\overline {R}_i+u_i=\overline {R}_i+m_i+\epsilon_i Ri​=Ri​+ui​=Ri​+mi​+ϵi​

  • Systematic risk for asset iii, mim_imi​, is then related to unexpected economy-wide shocks.

    Systematic risk mim_imi​ cannot be eliminated by holding a diversified portfolio.

    In a kkk-factor model we simply use a numerical index to denote each of the systematic risks affecting returns on stock iii:

Ri=R‾i+ui=R‾i+βi1F1+βi2F2+⋯+βikFk+ϵiR_i=\overline {R}_i+u_i=\overline {R}_i+\beta_{i1}F_1+\beta_{i2}F_2+\dots+\beta_{ik}F_k+\epsilon_i Ri​=Ri​+ui​=Ri​+βi1​F1​+βi2​F2​+⋯+βik​Fk​+ϵi​

  • Unsystematic risk ϵi\epsilon_iϵi​ can be eliminated by holding a diversified portfolio. For market portfolio xM\pmb x_MxxxM​ with NNN stocks, ϵi\epsilon_iϵi​ satisfies
    Var(∑i=1Nxiϵi)=0Var(\displaystyle\sum_{i=1}^Nx_i\epsilon_i)=0 Var(i=1∑N​xi​ϵi​)=0

(2)

Consistent.

The Actual return for asset (or stock) iii is consistent:

APT holds the equation for expected return:
R‾i=r+∑i=1kβij[R‾Fj−r]\overline{R}_i=r+\displaystyle\sum_{i=1}^k\beta_{ij}[\overline R_{F_j}-r] Ri​=r+i=1∑k​βij​[RFj​​−r]
We think CAPM as a special case where there is just one “factor”, namely FMF_MFM​ (the unanticipated return on a broad-based market portfolio such as S&P 500):
R‾i=r+βiM[R‾M−r]\overline{R}_i=r+\beta_{iM}[\overline R_M-r] Ri​=r+βiM​[RM​−r]
Actual returns in APT model holds the equation:
Ri=R‾i+∑j=1kβijFj+ϵi=r+∑i=1kβij[R‾Fj−r]+∑j=1kβijFj+ϵiR_i=\overline{R}_i+\displaystyle\sum_{j=1}^k\beta_{ij}F_j+\epsilon_i\\ =r+\displaystyle\sum_{i=1}^k\beta_{ij}[\overline R_{F_j}-r]+\displaystyle\sum_{j=1}^k\beta_{ij}F_j+\epsilon_i Ri​=Ri​+j=1∑k​βij​Fj​+ϵi​=r+i=1∑k​βij​[RFj​​−r]+j=1∑k​βij​Fj​+ϵi​
This equation extends the CAPM in this case to apply to actual return as opposed to expected return:
Ri=R‾i+βiMFM+ϵi=r+βiM[R‾M−r]+βiMFM+ϵi=r+βiM[R‾M−r]+βiM[RM−R‾M]+ϵi=r+βiM[RM−r]+ϵi\begin{aligned} R_i&=\overline{R}_i+\beta_{iM}F_M+\epsilon_i\\ &=r+\beta_{iM}[\overline R_M-r]+\beta_{iM}F_M+\epsilon_i\\ &=r+\beta_{iM}[\overline R_M-r]+\beta_{iM}[R_M-\overline R_M]+\epsilon_i\\ &=r+\beta_{iM}[R_M-r]+\epsilon_i \end{aligned} Ri​​=Ri​+βiM​FM​+ϵi​=r+βiM​[RM​−r]+βiM​FM​+ϵi​=r+βiM​[RM​−r]+βiM​[RM​−RM​]+ϵi​=r+βiM​[RM​−r]+ϵi​​
With βiM=βi\beta_{iM}=\beta_iβiM​=βi​ and r=Rfr= R_fr=Rf​ in CAPM, this equation Ri=Rf+βi+[RM−Rf]+ϵiR_i=R_f+\beta_i+[R_M-R_f]+\epsilon_iRi​=Rf​+βi​+[RM​−Rf​]+ϵi​ is just the regression equation used to implement in CAPM.

The Expected return for asset (or stock) iii is consistent:

Conversely, if CAPM is valid, the expected return of asset iii is given by:
E(Ri)=Rf+βi[E(RM)−Rf]i.e.R‾i=r+βiM[R‾M−r]E(R_i)=R_f+\beta_i[E(R_M)-R_f]\\ i.e.\ \overline R_i=r+\beta_{iM}[\overline R_M-r] E(Ri​)=Rf​+βi​[E(RM​)−Rf​]i.e. Ri​=r+βiM​[RM​−r]
The expected return for asset iii according to APT is
R‾i=r+∑i=1kβij[R‾Fj−r]\overline{R}_i=r+\displaystyle\sum_{i=1}^k\beta_{ij}[\overline R_{F_j}-r] Ri​=r+i=1∑k​βij​[RFj​​−r]
If CAPM holds, the expected return R‾Fj\overline R_{F_j}RFj​​ will satisfy:
R‾Fj=r+βFjM[R‾M−r]\overline R_{F_j}=r+\beta_{F_jM}[\overline R_M-r] RFj​​=r+βFj​M​[RM​−r]
Plug in:
R‾i=r+∑i=1kβijβFjM[R‾M−r]=r+(R‾M−r)∑i=1kβijβFjM=r+(R‾M−r)βiM\begin{aligned} \overline{R}_i&=r+\displaystyle\sum_{i=1}^k\beta_{ij}\beta_{F_jM}[\overline R_M-r]\\ &=r+(\overline R_M-r)\displaystyle\sum_{i=1}^k\beta_{ij}\beta_{F_jM}\\ &=r+(\overline R_M-r)\beta_{iM} \end{aligned} Ri​​=r+i=1∑k​βij​βFj​M​[RM​−r]=r+(RM​−r)i=1∑k​βij​βFj​M​=r+(RM​−r)βiM​​
Thus, as long as ∑i=1kβijβFjM=βiM\displaystyle\sum_{i=1}^k\beta_{ij}\beta_{F_jM}=\beta_{iM}i=1∑k​βij​βFj​M​=βiM​, R‾i=r+βiM(R‾M−r)\overline{R}_i=r+\beta_{iM}(\overline R_M-r)Ri​=r+βiM​(RM​−r). It’s consistent to the expected return on asset iii given by CAPM.

In conclusion, a kkk factor APT model can be consistent with CAPM if the factors are priced right. CAPM is a special case of APT model.

(3)

⭐Advantages

  • In contrast to CAPM, the APT:

    • allows for multiple risk factors that can vary in relative importance over time; 随时间变化的多因子
    • can be used to test information about the types of shocks that lead to market risk; 对引起市场风险的不同类型冲击进行信息检验
    • may better predict risk premiums for a project that combines the risks embodied in existing projects. 对现存研究中的风险因素进行组合研究来更好地预测风险溢价
  • On the other hand:

    • CAPM is more closely related to the underlying economic choice - namely, the trade-off between risk and return.平衡风险和收益
    • The development of the CAPM enables us to derive the risk return separation theorem.推出风险回报分离定理
    • The discussion of efficient sets elucidates (shows) the basic trade-off.有效集阐明了基础平衡

APT vs CAPM (differences)

  • APT makes no assumption about empirical distribution of asset returns 对资产回报的分布没有经验假设

  • No assumption of individual’s utility function 没有假设个体效用函数

  • More than 1 factor 多因子

  • It is for any subset of securities 证券的子集

  • No special role for the market portfolio in APT. 没有市场投资组合的角色

  • Can be easily extended to a multi-period framework. 容易拓展到多阶段的理论框架

Driving Arbitrage Pricing Theory Model

Assuming that the rate of return on each of the nnn security is a linear function of kkk factors:
Ri=E(Ri)+bi1F1+bi2F2+⋯+bikFk+ϵiR_i=E(R_i)+b_{i1}F_1+b_{i2}F_2+\dots+b_{ik}F_k+\epsilon_i Ri​=E(Ri​)+bi1​F1​+bi2​F2​+⋯+bik​Fk​+ϵi​
where

  • i=1,2,…,ni=1,2,\dots ,ni=1,2,…,n

  • RiR_iRi​ and E(Ri)E(R_i)E(Ri​) are the random and expected return rates on the ithi^{th}ith asset;

  • bikb_{ik}bik​ is the sensitivity of the ithi^{th}ith asset’s return to the kthk^{th}kth factor;

  • FkF_kFk​ is the mean zero kthk^{th}kth factor common to the returns of all assets, Cov(Fk,Fh)=0(k≠h)Cov(F_k,F_h)=0\ (k\neq h)Cov(Fk​,Fh​)=0 (k​=h), kkk factors are not co-related;

  • ϵi\epsilon_iϵi​ is a random zero mean noise term for the ithi^{th}ith asset.

Construct an arbitrage portfolio PPP using the above nnn assets:

  • No wealth:
    ∑i=1nwi=0or   eTw=wTe=0\displaystyle \sum_{i=1}^{n}w_i=0\ \ \ \text{or}\ \ \ e^Tw=w^Te=0 i=1∑n​wi​=0   or   eTw=wTe=0
    wiw_iwi​ is the weight of security iii in the portfolio, wT=(w1,w2,…,wn),eT=(1,1,…,1)\pmb w^T=(w_1,w_2,\dots,w_n), \pmb e^T=(1,1,\dots,1)wwwT=(w1​,w2​,…,wn​),eeeT=(1,1,…,1).

  • Having no risk and earning no return on average.

If PPP is well-diversified portfolio, the return of the arbitrage portfolio RPR_PRP​ is independent of individual risk of each security:
RP=∑i=1nwiRi=∑i=1nwiE(Ri)+∑i=1nwibi1F1+∑i=1nwibi2F2+⋯+∑i=1nwibikFk+∑i=1nwiϵiR_P=\displaystyle \sum_{i=1}^{n}w_i R_i =\displaystyle \sum_{i=1}^{n}w_iE(R_i)+\displaystyle \sum_{i=1}^{n}w_ib_{i1}F_1+\displaystyle \sum_{i=1}^{n}w_ib_{i2}F_2+\dots+\displaystyle \sum_{i=1}^{n}w_ib_{ik}F_k+\displaystyle \sum_{i=1}^{n}w_i\epsilon_i RP​=i=1∑n​wi​Ri​=i=1∑n​wi​E(Ri​)+i=1∑n​wi​bi1​F1​+i=1∑n​wi​bi2​F2​+⋯+i=1∑n​wi​bik​Fk​+i=1∑n​wi​ϵi​
To obtain a riskless arbitrage portfolio, one needs to eliminate both diversifiable and nondiversifiable risks:
wi≈1n,n→∞⇒∑i=1nwibik=0for all factors.⇒RP=∑i=1nwiE(Ri)=0w_i\approx\frac{1}{n},n\to\infty\Rightarrow\displaystyle \sum_{i=1}^{n}w_ib_{ik}=0\ \ \ \text{for all factors.}\\ \Rightarrow R_P=\displaystyle \sum_{i=1}^{n}w_iE(R_i)=0 wi​≈n1​,n→∞⇒i=1∑n​wi​bik​=0   for all factors.⇒RP​=i=1∑n​wi​E(Ri​)=0

  • The deterministic return of the portfolio must equals to 0, otherwise there exists arbitrage opportunity.

We have vectors and matrix:
wT=(w1,w2,…,wn)μT=(E(R1),E(R2),…,E(Rn))b=[1b11b12⋯b1k1b21b22⋯b2k⋮⋮⋮⋱⋮1bn1bn2⋯bnk]\pmb w^T=(w_1,w_2,\dots,w_n)\\ \pmb \mu^T=(E(R_1),E(R_2),\dots,E(R_n))\\ \pmb b = \left[ \begin{matrix} 1& b_{11} &b_{12} &\cdots &b_{1k}\\1&b_{21} &b_{22} &\cdots &b_{2k}\\\vdots &\vdots &\vdots &\ddots &\vdots\\1&b_{n1} &b_{n2} &\cdots &b_{nk}\end{matrix} \right] wwwT=(w1​,w2​,…,wn​)μ​μ​​μT=(E(R1​),E(R2​),…,E(Rn​))bbb=⎣⎢⎢⎢⎡​11⋮1​b11​b21​⋮bn1​​b12​b22​⋮bn2​​⋯⋯⋱⋯​b1k​b2k​⋮bnk​​⎦⎥⎥⎥⎤​
There exists a set of k+1k+1k+1 coefficients λ0,λ1,…,λk\lambda_0,\lambda_1,\dots,\lambda_kλ0​,λ1​,…,λk​, i.e. λT=(λ0,λ1,…,λk)\pmb \lambda^T=(\lambda_0,\lambda_1,\dots,\lambda_k)λλλT=(λ0​,λ1​,…,λk​) such that

bλ=[1b11b12⋯b1k1b21b22⋯b2k⋮⋮⋮⋱⋮1bn1bn2⋯bnk][λ0λ1⋮λk]=[λ0+λ1b11+⋯+λkb1kλ0+λ1b21+⋯+λkb2k⋮λ0+λ1bn1+⋯+λkbnk]=[E(R1)E(R2)⋮E(Rn)]=μ\begin{aligned} \pmb b\pmb \lambda=\left[ \begin{matrix} 1& b_{11} &b_{12} &\cdots &b_{1k}\\1&b_{21} &b_{22} &\cdots &b_{2k}\\\vdots &\vdots &\vdots &\ddots &\vdots\\1&b_{n1} &b_{n2} &\cdots &b_{nk}\end{matrix} \right] \left[ \begin{matrix} \lambda_0\\\lambda_1\\\vdots \\\lambda_k\end{matrix} \right]= \left[ \begin{matrix} \lambda_0+\lambda_1b_{11}+\dots+\lambda_kb_{1k}\\\lambda_0+\lambda_1b_{21}+\dots+\lambda_kb_{2k}\\\vdots \\\lambda_0+\lambda_1b_{n1}+\dots+\lambda_kb_{nk}\end{matrix} \right]= \left[ \begin{matrix} E(R_1)\\E(R_2)\\\vdots \\E(R_n)\end{matrix} \right]= \pmb \mu \end{aligned} bbbλλλ=⎣⎢⎢⎢⎡​11⋮1​b11​b21​⋮bn1​​b12​b22​⋮bn2​​⋯⋯⋱⋯​b1k​b2k​⋮bnk​​⎦⎥⎥⎥⎤​⎣⎢⎢⎢⎡​λ0​λ1​⋮λk​​⎦⎥⎥⎥⎤​=⎣⎢⎢⎢⎡​λ0​+λ1​b11​+⋯+λk​b1k​λ0​+λ1​b21​+⋯+λk​b2k​⋮λ0​+λ1​bn1​+⋯+λk​bnk​​⎦⎥⎥⎥⎤​=⎣⎢⎢⎢⎡​E(R1​)E(R2​)⋮E(Rn​)​⎦⎥⎥⎥⎤​=μ​μ​​μ​

wTμ=(w1,w2,…,wn)[λ0+λ1b11+⋯+λkb1kλ0+λ1b21+⋯+λkb2k⋮λ0+λ1bn1+⋯+λkbnk]=w1(λ0+λ1b11+⋯+λkb1k)+w2(λ0+λ1b21+⋯+λkb2k)+⋯+wn(λ0+λ1bn1+⋯+λkbnk)=λ0∑i=1nwi+λ1∑i=1nwibi1+⋯+λk∑i=1nwibik=0\begin{aligned} \pmb w^T\pmb \mu&=(w_1,w_2,\dots,w_n)\left[ \begin{matrix} \lambda_0+\lambda_1b_{11}+\dots+\lambda_kb_{1k}\\\lambda_0+\lambda_1b_{21}+\dots+\lambda_kb_{2k}\\\vdots \\\lambda_0+\lambda_1b_{n1}+\dots+\lambda_kb_{nk}\end{matrix} \right]\\ &=w_1(\lambda_0+\lambda_1b_{11}+\dots+\lambda_kb_{1k})+w_2(\lambda_0+\lambda_1b_{21}+\dots+\lambda_kb_{2k})+\dots+w_n(\lambda_0+\lambda_1b_{n1}+\dots+\lambda_kb_{nk})\\ &=\lambda_0\displaystyle\sum_{i=1}^n w_i+\lambda_1\displaystyle\sum_{i=1}^n w_ib_{i1}+\dots+\lambda_k\displaystyle\sum_{i=1}^n w_ib_{ik}=0 \end{aligned} wwwTμ​μ​​μ​=(w1​,w2​,…,wn​)⎣⎢⎢⎢⎡​λ0​+λ1​b11​+⋯+λk​b1k​λ0​+λ1​b21​+⋯+λk​b2k​⋮λ0​+λ1​bn1​+⋯+λk​bnk​​⎦⎥⎥⎥⎤​=w1​(λ0​+λ1​b11​+⋯+λk​b1k​)+w2​(λ0​+λ1​b21​+⋯+λk​b2k​)+⋯+wn​(λ0​+λ1​bn1​+⋯+λk​bnk​)=λ0​i=1∑n​wi​+λ1​i=1∑n​wi​bi1​+⋯+λk​i=1∑n​wi​bik​=0​

We have E(Ri)=λ0+λ1bi1+⋯+λkbikE(R_i)=\lambda_0+\lambda_1b_{i1}+\dots+\lambda_kb_{ik}E(Ri​)=λ0​+λ1​bi1​+⋯+λk​bik​ satisfying ∑i=1nwiE(Ri)=wTμ=0\displaystyle \sum_{i=1}^{n}w_iE(R_i)=\pmb w^T\pmb \mu=0i=1∑n​wi​E(Ri​)=wwwTμ​μ​​μ=0. See λ0\lambda_0λ0​ as risk-free return, i.e. λ0=Rf\lambda_0=R_fλ0​=Rf​, so we have
E(Ri)=Rf+λ1bi1+⋯+λkbikE(R_i)=R_f+\lambda_1b_{i1}+\dots+\lambda_kb_{ik} E(Ri​)=Rf​+λ1​bi1​+⋯+λk​bik​
Specifically, if one factor portfolio only depends on factor 1 (F1F_1F1​), then
E(R1)=Rf+1⋅λ1⇒λ1=E(R1)−RfE(R_1)=R_f+1\cdot\lambda_1\Rightarrow \lambda_1=E(R_1)-R_f E(R1​)=Rf​+1⋅λ1​⇒λ1​=E(R1​)−Rf​
Similarly,
λ2=E(R2)−Rf…λk=E(Rk)−Rf\lambda_2=E(R_2)-R_f\\ \dots\\ \lambda_k=E(R_k)-R_f λ2​=E(R2​)−Rf​…λk​=E(Rk​)−Rf​
Therefore,
E(Ri)=Rf+bi1[E(R1)−Rf]+⋯+bik[E(Rk)−Rf]E(R_i)=R_f+b_{i1}[E(R_1)-R_f]+\dots+b_{ik}[E(R_k)-R_f] E(Ri​)=Rf​+bi1​[E(R1​)−Rf​]+⋯+bik​[E(Rk​)−Rf​]

Assets Pricing 资产定价(四)相关推荐

  1. 金融经济学(王江)第四章 套利和资产定价

    文章目录 第四章 套利和资产定价 4.1 给定任意市场结构 4.1.1 什么样的市场结构 4.1.2 冗余证券 4.1.3 复制组合思想 4.1.4 AD证券的复制 4.2 套利 **4.3 资产定价 ...

  2. 数据有价——数据资产定价研究初探

    数据(Data)是一项资产的观念形成虽然时间不长,但已经成为人们的共识.成为资产的两个基本前提条件是能够确权和定价.确权是确定谁拥有什么权利或权益,定价使得资产具备可转让性.相比其他资产类别,数据资产 ...

  3. 为什么将机器学习应用于资产定价?

    以下分享Shihao Gu等的文献的一个章节,因为读到这里很感动,所以特地记下来. A number of aspects of empirical asset pricing make it a p ...

  4. 理解资产定价领域的“均衡模型”:APT、CAPM、马歇尔、瓦尔拉斯、无套利均衡

    CAPM与APT C A P M CAPM CAPM( C a p i t a l A s s e t P r i c i n g M o d e l Capital \;Asset \;Pricin ...

  5. 浅论资产定价的两大基石 (I)

    Two Pillars of Asset Pricing (I) 该文是Eugene Fama荣获2013年诺贝尔经济学奖时发表演讲的文字版,发表在次年6月的AER(American Economic ...

  6. 资产定价核心等式及其应用

    接触过资产定价的同学可能知道,资产定价有一个核心公式p=E(mx)p=\text{E}(mx)p=E(mx),它的内涵十分丰富.本文将从Consumption-based model出发,详解该公式的 ...

  7. 聚宽 get_price 多个股票数据_《实证资产定价:股票横截面收益》

    本书简介:<实证资产定价:股票横截面收益>是对实证资产定价研究领域重要的成果的全面综述.首先,本书通过对详细案例所示结果的实施和解释的深入讨论,对当下广泛使用的计量经济学方法进行了全面阐述 ...

  8. 资产定价Model——随机变量因子

    本篇paper逻辑,资产定价除了以最基础的无风险收益定价以外,通常还会受消费,市场,时政等一系列其它因素的影响.我们把它归结成随机折现因子.如图中定价式子(是一周期且离散.若要拓展成连续时间,见图片左 ...

  9. 2022年CPA财务成本管理-资产定价专题(Asset Pricing)【3月22开始15天15考点刷题】【完结】

    这个名字迷惑性太强,展开来说是Corporate Finance(Asset Pricing, Corporate Goverance)和成本计算.管理会计✅3门课. 鸣谢对啊网.第二章财务比率我这5 ...

最新文章

  1. Web Performance and Load Test Project错误集
  2. 计算机视觉经典论文整理
  3. 企业建设什么样的网站才能符合用户?
  4. 让XP远程桌面支持多用户
  5. 阿里云CentOS7.3搭建多用户私有git服务器(从安装git开始)
  6. 论程序员的核心竞争力
  7. 炸了!这届ICLR论文被指太“渣”?Goodfellow围追堵截要说法
  8. 模拟存储器管理C语言,操作系统-存储器管理实验C语言.doc
  9. Cobbler详解(五)——cobbler常用命令
  10. 数据化、信息化、数字化和智能化之间联系和区别解析(建设收藏)
  11. 流量变现|谁能拒绝私藏一套app流量变现的攻略呢?
  12. Delphi第三方控件大比拼(收费篇)
  13. 用Photoshop抠图
  14. Inception-V3论文翻译——中英文对照
  15. java破解WIFI
  16. 5月30日第壹简报,星期一,农历五月初一
  17. js 数组 pop,push,unshift,splice,shift
  18. [已推荐到体育博客,点击查看更多精彩内容] 篮球上的幽默时刻(多图)
  19. 操作系统笔记 清华大学陈渝
  20. MySQL中Invalid default value错误解决方法

热门文章

  1. 2023 最新大猿人中控充值系统源码 免授权
  2. 假定站点A和B在同一个10Mb/s以太网网段上。这两个站点之间的传播时延为225比特时间。现假定A开始发送一帧,并且在A发送结束之前B也发送一帧。如果A发送的是以太网所容许的最短的帧,那么A在检测到
  3. 如何搭建自己的web服务器
  4. 3年研发投入将超千亿 阿里巴巴成立“达摩院”引入顶尖科学家
  5. 从苏宁电器到卡巴斯基第12篇:我在苏宁电器当营业员 III
  6. 阿里p9年薪300万哭穷!打工人挣多少钱,也跳不出“工薪阶层陷阱”
  7. HP DV3000系列 XP驱动下载!
  8. eNSPV100 软件(华为ENSP模拟器)及其安装指南
  9. 任务管理器被禁用时的三种恢复方法
  10. java list转二维数组